
Introduction to Arrays
Last updated on 2024-08-05 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

Arrays: Python ListsArrays: Python Lists

OVERVIEW

Questions

What are the different types of arrays?

How is data stored and retrieved from an array?

What are nested arrays?

What are tuples?

Objectives

Understanding difference between lists and tuples.

Understanding operations on arrays.

Storing multidimensional data.

Understanding the concepts of mutability and immutability.

Basic Python

https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/04-arrays.Rmd
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/04-arrays.Rmd
http://127.0.0.1:5929/04-arrays.pdf
http://127.0.0.1:5929/04-arrays.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1
https://www.youtube.com/watch?v=RlhGPZv8fZI

Arrays: Nested Arrays in PythonArrays: Nested Arrays in Python

Arrays: Numpy Arrays in PythonArrays: Numpy Arrays in Python

Variables and Types

Logical Operations

Conditional Statements

So far, we have been using variables to store individual values. In some circumstances, we may need to access multiple values in order to
perform operations. On such occasions, defining a variable for every single value can become very tedious. To address this, we use arrays.

Arrays are variables that hold any number of values. Python provides three types of built-in arrays. These are: list, tuple, and set. There are
a several common features among all arrays in Python; however, each type of array enjoys its own range of unique features that facilitates
specific operations.

Each item inside an array may be referred to as an item or a member of that array.

PREREQUISITE

REMEMBER

https://www.youtube.com/watch?v=KiMQiN4CN8s
https://www.youtube.com/watch?v=id72qTBmCEY
http://127.0.0.1:5929/02-input_output.html#varTypes
http://127.0.0.1:5929/02-input_output.html#subsec:logicalOperatons
http://127.0.0.1:5929/03-conditional_statements.html

Lists
Resource for Lists

Lists are the most frequently-used type of arrays in Python. It is therefore important to understand how they work, and how can we use them,
and the features they offer, to our advantage.

The easiest way to imagine how a list works, is to think of it as a table that can have any number of rows. This is akin to a spreadsheet with
one column. For instance, suppose we have a table with four rows in a spreadsheet application, as follows:

The number of rows in an array determines its length. The above table has four rows; therefore it is said to have a length of 4.

Implementation

In order to implement a list in Python, we place values into this list and separate them from one another using commas inside square
brackets: list = [1,2,3].

REMEMBER

table = [5, 21, 5, -1]

print(table)

PYTHON

[5, 21, 5, -1]

OUTPUT

print(type(table))

PYTHON

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

Implement a list array called fibonacci, whose members represent the first 8 numbers of the Fibonacci sequence as follows:

FIBONACCI NUMBERS (FIRST 8)

1 1 2 3 5 8 13 21

Solution

Indexing
In an array, an index is an integer (whole number) that corresponds to a specific item in that array.

You can think of an index as a unique reference or key that corresponds to a specific row in a table. We don’t always write the row number when
we create a table. However, we always know that the third row of a table refers to us starting from the first row (row #1), counting three rows
down and there we find the third row.

Python, however, uses what we term zero-based indexing. We don’t count the first row as row #1; instead, we consider it to be row #0. As a
consequence of starting from #0, we count rows in our table down to row #2 instead of #3 to find the third row. So our table may,essentially, be
visualised as follows:

<class 'list'>

OUTPUT

PRACTICE EXERCISE 1

fibonacci = [1, 1, 2, 3, 5, 8, 13, 21]

PYTHON

https://en.wikipedia.org/wiki/Fibonacci_number

Python uses zero-based indexing system. This means that the first row of an array, regardless of its type, is always referred to with
index #0.

With that in mind, we can use the index for each item in the list, in order to retrieve it from a list.

Given the following list of four members stored in a variable called table:

table = [5, 21, 5, -1]

REMEMBER

we can visualise the referencing protocol in Python as follows:

As illustrated in this figure; in order to retrieve a member of an array through its index, we write the name of the variable immediately followed
by the index value inside a pair of square brackets — e.g. table[2]. Note, you may have noticed our interchangeable use of the terms ‘list’ and
‘array’. That is because a list, in Python, can be considered as a type of dynamic array (they can increase or decrease in size, as required).

print(table[2])

PYTHON

5

OUTPUT

print(table[0])

PYTHON

5

OUTPUT

Retrieve and display the 5 Fibonacci number from the list you created in the previous Practice Exercise 1.

Solution

It is sometimes more convenient to index an array, backwards — that is, to reference the members from the bottom of the array, first. This is
termed negative indexing, and is particularly useful when we are dealing with lengthy arrays. The indexing system in Python support both
positive and negative indexing systems.

The table above therefore may also be represented, as follows:

item = table[3]

print(item)

PYTHON

-1

OUTPUT

PRACTICE EXERCISE 2

th

print(fibonacci[4])

PYTHON

5

OUTPUT

Unlike the normal indexing system, which starts from #0, negative indexes start from #-1. This serves to definitely highlight which
indexing system is being used.

If the index is a negative number, the indices are counted from the end of the list. We can implement negative indices in the same way as
positive indices:

REMEMBER

print(table[-1])

PYTHON

-1

OUTPUT

print(table[-2])

PYTHON

5

OUTPUT

We know that in table, index #-3 refers the same value as index #1. So let us go ahead and test this:

If the index requested is larger than the length of the list minus one, an IndexError will be raised:

The values stored in a list may be referred to as the members of that list.

Retrieve and display the last Fibonacci number from the list you created in Practice Exercise 1.

print(table[-3])

PYTHON

21

OUTPUT

equivalence = table[-3] == table[1]

print(equivalence)

PYTHON

True

OUTPUT

print(table[4])

PYTHON

IndexError: list index out of range

OUTPUT

REMEMBER

PRACTICE EXERCISE 3

Solution

Slicing
It is also possible that you may wish to retrieve more than one value from a list at a time, as long as the values are in consecutive rows. This
process is is termed , and may be visualised, as follows:

print(fibonacci[-1])

PYTHON

21

OUTPUT

Python is a non-inclusive language. This means that in table[a:b], a slice includes all the values from, and including index a right down
to, but excluding, index b.

Given a list representing the above table:

table = [5, 21, 5, -1]

we may retrieve a slice of table, as follows:

print(table[0:2])

If the first index of a slice is #0, the slice may also be written as:

Negative slicing is also possible:

REMEMBER

my_slice = table[1:3]

print(my_slice)

PYTHON

[21, 5]

OUTPUT

print(table[:2])

PYTHON

[5, 21]

OUTPUT

Retrieves every item from the first member down

to, but excluding the last one:

print(table[:-1])

PYTHON

If the second index of a slice represents the last index of a list, it would be written as:

We may also store indices and slices in variables:

The slice() function may also be used to create a slice variable:

[5, 21, 5]

OUTPUT

print(table[1:-2])

PYTHON

[21]

OUTPUT

print(table[2:])

PYTHON

[5, -1]

OUTPUT

print(table[-3:])

PYTHON

[21, 5, -1]

OUTPUT

start, end = 1, 3

new_table = table[start:end]

print(new_table)

PYTHON

[21, 5]

OUTPUT

Retrieve and display a slice of Fibonacci numbers from the list you created in Practice Exercise 1 that includes all the members from
the second number onwards — i.e. the slice must not include the first value in the list.

Solution

Methods are features of Object-Oriented Programming (OOP) - a programming paradigm that we do not discuss in the context of this
course. You can think of a method as a function that is associated with a specific type. The job of a method is to provide a certain
functionality unique to the type it is associated with. In this case, .index() is a method of type list that, given a value, finds and
produces its index from the list.

From value to index
Given a list entitled table as:

we can also determine the index of a specific value. To do so, we use the .index() method:

my_slice = slice(1, 3)

print(table[my_slice])

PYTHON

[21, 5]

OUTPUT

PRACTICE EXERCISE 4

print(fibonacci[1:])

PYTHON

[1, 2, 3, 5, 8, 13, 21]

OUTPUT

NOTE

table = [5, 21, 5, -1]

PYTHON

https://en.wikipedia.org/wiki/Object-oriented_programming

If a value is repeated more than once in the list, the index corresponding to the first instance of that value is returned:

If a value does not exist in the list, using .index() will raise a ValueError:

print(table.index(21))

PYTHON

1

OUTPUT

last_item = table.index(-1)

print(last_item)

PYTHON

3

OUTPUT

print(table.index(5))

PYTHON

0

OUTPUT

print(table.index(9))

PYTHON

ValueError: 9 is not in list

OUTPUT

Find and display the index of these values from the list of Fibonacci numbers that you created in Practice Exercise 1:

1

5

21

Solution

Mutability
Mutability is a term that we use to refer to a structure’s capability of being change, once it is created. Arrays of type list are modifiable. That is,
we can add new values, change the existing ones or remove them from the array, altogether. Variable types that allow their contents to be
modified are referred to as mutable types in programming.

Addition of new members
Given a list called table, we can add new values to it using .append() :

PRACTICE EXERCISE 5

print(fibonacci.index(1))

print(fibonacci.index(5))

print(fibonacci.index(21))

PYTHON

0

4

7

OUTPUT

table.append(29)

print(table)

PYTHON

[5, 21, 5, -1, 29]

OUTPUT

Sometimes, it may be necessary to insert a value at a specific position or index in a list. To do so, we may use .insert() , which takes two
input arguments; the first representing the index, and the second the value to be inserted:

Given fibonacci - the list representing the first 8 numbers in the Fibonacci sequence that you created in Practice Exercise 1:

1. The 10 number in the Fibonacci sequence is 55. Add this value to fibonacci.

2. Now that you have added 55 to the list, it no longer provides a correct representation of the Fibonacci sequence. Alter fibonacci
and insert the missing number such that the list correctly represents the first 10 numbers in the Fibonacci sequence, as follows:

FIBONACCI NUMBERS (FIRST 8)

1 1 2 3 5 8 13 21 34 55

Solution

table.append('a text')

print(table)

PYTHON

[5, 21, 5, -1, 29, 'a text']

OUTPUT

table.insert(3, 56)

print(table)

PYTHON

[5, 21, 5, 56, -1, 29, 'a text']

OUTPUT

PRACTICE EXERCISE 6

th

fibonacci.append(55)

PYTHON

Solution

Modification of members
Given a list as:

we can also modify the exiting value or values inside a list. This process is sometimes referred to as item assignment:

It is also possible to perform item assignment over a slice containing any number of values. Note that when modifying a slice, the replacement
values must be the same length as the slice we are trying to replace:

fibonacci.insert(8, 34)

PYTHON

table = [5, 21, 5, 56, -1, 29, 'a text']

PYTHON

Changing the value of the 2nd member.

table[1] = 174

print(table)

PYTHON

[5, 174, 5, 56, -1, 29, 'a text']

OUTPUT

table[-4] = 19

print(table)

PYTHON

[5, 174, 5, 19, -1, 29, 'a text']

OUTPUT

Create a list containing the first 10 prime numbers as:

primes = [2, 3, 5, 11, 7, 13, 17, 19, 23, 29]

Values 11 and 7, however, have been misplaced in the sequence. Correct the order by replacing the slice of primes that represents [11,
7] with [7, 11].

print('Before:', table)

replacement = [-38, 0]

print('Replacement length:', len(replacement))

print('Replacement length:', len(table[2:4]))

The replacement process:

table[2:4] = replacement

print('After:', table)

PYTHON

Before: [5, 174, 5, 19, -1, 29, 'a text']

Replacement length: 2

Replacement length: 2

After: [5, 174, -38, 0, -1, 29, 'a text']

OUTPUT

Using the existing value to determine the new value:

table[2] = table[2] + 50

print(table)

PYTHON

[5, 174, 12, 0, -1, 29, 'a text']

OUTPUT

PRACTICE EXERCISE 7

https://en.wikipedia.org/wiki/Prime_number

Solution

Removal of members
When removing a value from a list, we have two options depending on our needs: we either remove the member and retain the value in
another variable, or we remove it and dispose of the value, completely.

To remove a value from a list without retaining it, we use .remove() . The method takes one input argument, which is the value we would like
to remove from our list:

Alternatively, we can use del ; a Python syntax that we can use, in this context, to delete a specific member using its index:

As established above, we can also delete a member and retain its value. Of course we can do so by holding the value inside another variable
before deleting it.

Whilst this is a valid approach, Python’s list provide us with .pop() to simplify the process even further. The method takes one input
argument for the index of the member to be removed. It removes the member from the list and returns its value, so that we can retain it in a
variable:

primes = [2, 3, 5, 11, 7, 13, 17, 19, 23, 29]

primes[3:5] = [7, 11]

PYTHON

table.remove(174)

print(table)

PYTHON

[5, 12, 0, -1, 29, 'a text']

OUTPUT

del table[-1]

print(table)

PYTHON

[5, 12, 0, -1, 29]

OUTPUT

removed_value = table.pop(2)

print('Removed value:', removed_value)

print(table)

PYTHON

We know that the nucleotides of DNA include Adenosine, Cytosine, Threonine and Glutamine: A, C, T, and G.

Given a list representing a nucleotide sequence:

strand = ['A', 'C', 'G', 'G', 'C', 'M', 'T', 'A']

1. Find the index of the invalid nucleotide in strand.

2. Use the index you found to remove the invalid nucleotide from strand and retain the value in another variable. Display the result as:

Removed from the strand: X

New strand: [X, X, X, ...]

3. What do you think happens once we run the following code, and why? What would be the final result displayed on the screen?

strand.remove('G')

print(strand)

Solution

Removed value: 0

[5, 12, -1, 29]

OUTPUT

PRACTICE EXERCISE 8

strand = ['A', 'C', 'G', 'G', 'C', 'M', 'T', 'A']

outlier_index = strand.index('M')

PYTHON

Solution

Solution

One of the two G nucleotides, the one at index 2 of the original array, is removed. This means that the .remove() method removes only
first instance of a member in an array. The output would therefore be:

['A', 'C', 'G', 'C', 'M', 'T', 'A']

Method–mediated operations
We already know that methods are akin to functions that are associated with a specific type. In this subsection, we will be looking at how
operations are performed using methods. We will not be introducing anything new, but will recapitulate what we already know from, but from
different perspectives.

So far in this chapter, we have learned how to perform different operations on list arrays in Python. You may have noticed that some
operations return a result that we can store in a variable, while others change the original value.

With that in mind, we can divide operations performed using methods into two general categories:

1. Operations that return a result without changing the original array:

2. Operations that use specific methods to change the original array, but do not necessarily return anything (in-place operations):

outlier_value = strand.pop(outlier_index)

print('Removed from the strand:', outlier_value)

print('New strand:', strand)

PYTHON

Removed from the strand: M

New strand: ['A', 'C', 'G', 'G', 'C', 'T', 'A']

OUTPUT

table = [1, 2, 3, 4]

index = table.index(3)

print(index)

print(table)

PYTHON

2

[1, 2, 3, 4]

OUTPUT

If we attempt to store the output of an operation that does not a return result, and store this into a variable, the variable will be created, but its
value will be set to None, by default:

It is important to know the difference between these types of operations. So as a rule of thumb, when we use methods to perform an operation,
we can only change the original value if it is an instance of a mutable type. See Table to find out which of Python’s built-in types are mutable.

The methods that are associated with immutable objects always return the results and do not provide the ability to alter the original value:

In-place operation on a mutable object of type list:

In-place operation on an immutable object of type str:

table = [1, 2, 3, 4]

table.append(5)

print(table)

PYTHON

[1, 2, 3, 4, 5]

OUTPUT

result = table.append(6)

print(result)

print(table)

PYTHON

None

[1, 2, 3, 4, 5, 6]

OUTPUT

table = [5, 6, 7]

table.remove(6)

print(table)

PYTHON

[5, 7]

OUTPUT

string = '567'

string.remove(20)

PYTHON

http://127.0.0.1:5929/02-input_output.html#fig:nativeTypes

Normal operation on a mutable object of type list:

Normal operation on a mutable object of type list:

List members
A list is a collection of members that are independent of each other. Each member has its own type, and is therefore subject to the properties
and limitations of that type:

AttributeError: 'str' object has no attribute 'remove'

OUTPUT

print(string)

PYTHON

567

OUTPUT

table = [5, 6, 7]

ind = table.index(6)

print(ind)

PYTHON

1

OUTPUT

string = '567'

ind = string.index('6')

print(ind)

PYTHON

1

OUTPUT

table = [1, 2.1, 'abc']

print(type(table[0]))

print(type(table[1]))

print(type(table[2]))

PYTHON

http://127.0.0.1:5929/02-input_output.html#varTypes

For instance, mathematical operations may be considered a feature of all numeric types demonstrated in Table. However, unless in specific
circumstance described in subsection Non-numeric values, such operations do not apply to instance of type str.

A list in Python plays the role of a container that may incorporate any number of values. Thus far, we have learned how to handle individual
members of a list. In this subsection, we will be looking at several techniques that help us address different circumstances where we look at a
list from a ‘wholist’ perspective; that is, a container whose members are unknown to us.

Membership test
Membership test operations [advanced]

We can check to see whether or not a specific value is a member of a list using the operator syntax in :

The results may be stored in a variable:

<class 'int'>

<class 'float'>

<class 'str'>

OUTPUT

table = [1, 2.1, 'abc']

table[0] += 1

table[-1] += 'def'

print(table)

PYTHON

[2, 2.1, 'abcdef']

OUTPUT

items = [1, 2.4, 'John', 5, 4]

print(2.4 in items)

PYTHON

True

OUTPUT

print(3 in items)

PYTHON

False

OUTPUT

http://127.0.0.1:5929/02-input_output.html#fig:nativeTypes
http://127.0.0.1:5929/02-input_output.html#subsubsec:mathematicalOperations:nonNumerics
https://docs.python.org/3/reference/expressions.html#membership-test-operations

Similar to any other logical expression, we can negate membership tests by using :

has_five = 5 in items

print(has_five)

PYTHON

True

OUTPUT

expr = 10 not in items

print(expr)

PYTHON

True

OUTPUT

expr = 5 not in items

print(expr)

PYTHON

False

OUTPUT

http://127.0.0.1:5929/02-input_output.html#subsec:logicalOperatons
http://127.0.0.1:5929/02-input_output.html#sec:logicalStatements:Negation

When testing against str values — i.e. text; don’t forget that in programming, operations involving texts are always case-sensitive.

For numeric values, int and float may be used interchangeably:

Similar to other logical expression, membership tests may be incorporated into conditional statements:

REMEMBER

items = [1, 2.4, 'John', 5, 4]

john_capital = 'John'

john_small = 'john'

print(john_capital in items)

print(john_small in items)

PYTHON

True

False

OUTPUT

print(4 in items)

PYTHON

True

OUTPUT

print(4.0 in items)

PYTHON

True

OUTPUT

if 'John' in items:

 print('Hello John')

else:

 print('Hello')

PYTHON

http://127.0.0.1:5929/02-input_output.html#subsec:logicalOperatons

Given a list of randomly generated peptide sequences as:

Determine whether or not each of the following sequences exist in peptides; and if so, what is their corresponding index:

IVADH

CMGFT

DKAKL

THGYP

NNVSR

Display the results in the following format:

Sequence XXXXX was found at index XX

Solution

Hello John

OUTPUT

PRACTICE EXERCISE 9

peptides = [

 'FAEKE', 'DMSGG', 'CMGFT', 'HVEFW', 'DCYFH', 'RDFDM', 'RTYRA',

 'PVTEQ', 'WITFR', 'SWANQ', 'PFELC', 'KSANR', 'EQKVL', 'SYALD',

 'FPNCF', 'SCDYK', 'MFRST', 'KFMII', 'NFYQC', 'LVKVR', 'PQKTF',

 'LTWFQ', 'EFAYE', 'GPCCQ', 'VFDYF', 'RYSAY', 'CCTCG', 'ECFMY',

 'CPNLY', 'CSMFW', 'NNVSR', 'SLNKF', 'CGRHC', 'LCQCS', 'AVERE',

 'MDKHQ', 'YHKTQ', 'HVRWD', 'YNFQW', 'MGCLY', 'CQCCL', 'ACQCL'

]

PYTHON

sequence = "IVADH"

if sequence in peptides:

 index = peptides.index(sequence)

 print('Sequence', sequence, 'was found at index', index)

PYTHON

Solution

Solution

Solution

Solution

Length
Built-in functions: len

sequence = "CMGFT"

if sequence in peptides:

 index = peptides.index(sequence)

 print('Sequence', sequence, 'was found at index', index)

PYTHON

Sequence CMGFT was found at index 2

OUTPUT

sequence = "DKAKL"

if sequence in peptides:

 index = peptides.index(sequence)

 print('Sequence', sequence, 'was found at index', index)

PYTHON

sequence = "THGYP"

if sequence in peptides:

 index = peptides.index(sequence)

 print('Sequence', sequence, 'was found at index', index)

PYTHON

sequence = "NNVSR"

if sequence in peptides:

 index = peptides.index(sequence)

 print('Sequence', sequence, 'was found at index', index)

PYTHON

Sequence NNVSR was found at index 30

OUTPUT

https://docs.python.org/3.6/library/functions.html#len

The number of members contained within a list defines its length. Similar to the length of str values as discussed in mathematical operations
Practice Exercise 8 and Practice Exercise 11, we use the built-in function len() also to determine the length of a list:

The len() function always returns an integer value (int) equal to, or greater than, zero. We can store the length in a variable and use it in
different mathematical or logical operations:

We can also use the length of an array in conditional statements:

items = [1, 2.4, 'John', 5, 4]

print(len(items))

PYTHON

5

OUTPUT

print(len([1, 5, 9]))

PYTHON

3

OUTPUT

table = [1, 2, 3, 4]

items_length = len(items)

table_length = len(table)

print(items_length + table_length)

PYTHON

9

OUTPUT

print(len(table) > 2)

PYTHON

True

OUTPUT

http://127.0.0.1:5929/02-input_output.html#math_ops
http://127.0.0.1:5929/02-input_output.html#diy:mathsI
http://127.0.0.1:5929/02-input_output.html#diy:mathOpts:Huntington
http://127.0.0.1:5929/02-input_output.html#math_ops
http://127.0.0.1:5929/02-input_output.html#subsec:logicalOperatons
http://127.0.0.1:5929/03-conditional_statements.html

Both in and len() may be used in reference to any type of array or sequence in Python.

See Table to find out which of Python’s built-in types are regarded as a sequence.

Given the list of random peptides defined in Practice Exercise 9:

1. Define a list called overlaps, containing the sequences whose presence in peptides you previously confirmed in Practice Exercise
9.

2. Determine the length of peptides.

3. Determine the length of overlaps.

Display yours results as follows:

overlaps = ['XXXXX', 'XXXXX', ...]

Length of peptides: XX

Length of overlaps: XX

students = ['Julia', 'John', 'Jane', 'Jack']

present = ['Julia', 'John', 'Jane', 'Jack', 'Janet']

if len(present) == len(students):

 print('All the students are here.')

else:

 print('One or more students are not here yet.')

PYTHON

One or more students are not here yet.

OUTPUT

REMEMBER

PRACTICE EXERCISE 10

http://127.0.0.1:5929/02-input_output.html#fig:nativeTypes

Solution

Solution

overlaps = list()

sequence = "IVADH"

if sequence in peptides:

 overlaps.append(sequence)

sequence = "CMGFT"

if sequence in peptides:

 overlaps.append(sequence)

sequence = "DKAKL"

if sequence in peptides:

 overlaps.append(sequence)

sequence = "THGYP"

if sequence in peptides:

 overlaps.append(sequence)

sequence = "NNVSR"

if sequence in peptides:

 overlaps.append(sequence)

print('overlaps:', overlaps)

PYTHON

overlaps: ['CMGFT', 'NNVSR']

OUTPUT

print('Length of peptides:', len(peptides))

PYTHON

Length of peptides: 42

OUTPUT

Solution

Weak References and Copies
In our discussion on mutability, we also explored some of the in-place operations such as .remove() and .append() , that we can use to
modify an existing list. The use of these operations gives rise the following question: What if we need to perform an in-place operation, but
also want to preserve the original array?

In such cases, we create a deep copy of the original array before we call the method and perform the operation.

Suppose we have:

A weak reference for table_a, also referred to as an alias or a symbolic link, may be defined as follows:

Now if we perform an in-place operation on only one of the two variables (the original or the alias) as follows:

we will effectively change both of them:

print('Length of overlaps:', len(overlaps))

PYTHON

Length of overlaps: 2

OUTPUT

table_a = [1, 2, 3, 4]

PYTHON

table_b = table_a

print(table_a, table_b)

PYTHON

[1, 2, 3, 4] [1, 2, 3, 4]

OUTPUT

table_a.append(5)

PYTHON

print(table_a, table_b)

PYTHON

[1, 2, 3, 4, 5] [1, 2, 3, 4, 5]

OUTPUT

This is useful if we need to change the name of a variable under certain conditions to make our code more explicit and legible; however, it does
nothing to preserve an actual copy of the original data.

To retain a copy of the original array, however, we must perform a deep copy as follows:

where table_c represents a deep copy of table_b.

In this instance, performing an in-place operation on one variable would not have any impacts on the other:

where both the original array and its weak reference (table_a and table_b) changed without influencing the deep copy (table_c).

There is also a shorthand for the .copy() method to create a deep copy. As far as arrays of type list are concerned, writing:

new_table = original_table[:]

is exactly the same as writing:

new_table = original_table.copy()

Here is an example:

table_c = table_b.copy()

print(table_b, table_c)

PYTHON

[1, 2, 3, 4, 5] [1, 2, 3, 4, 5]

OUTPUT

table_b.append(6)

print(table_a, table_b, table_c)

PYTHON

[1, 2, 3, 4, 5, 6] [1, 2, 3, 4, 5, 6] [1, 2, 3, 4, 5]

OUTPUT

table_a = ['a', 3, 'b']

table_b = table_a

table_c = table_a.copy()

table_d = table_a[:]

table_a[1] = 5

print(table_a, table_b, table_c, table_d)

PYTHON

Whilst both the original array and its weak reference (table_a and table_b) changed in this example; the deep copies (table_c and table_d) have
remained unchanged.

When defining a consensus sequence, it is common to include annotations to represent ambiguous amino acids. Four such annotations
are as follows:

Given a list of amino acids as:

1. Use amino_acids to create an independent list called amino_acids_annotations that contains all the standard amino acids.

2. Add to amino_acids_annotations the 1-letter annotations for the ambiguous amino acids, as outlined in the table.

3. Evaluate the lengths for amino_acids and amino_acids_annotations and retain the result in a new list called lengths.

4. Using logical operations, test the two values stored in lengths for equivalence and display the result as a boolean (True or False)
output.

['a', 5, 'b'] ['a', 5, 'b'] ['a', 3, 'b'] ['a', 3, 'b']

OUTPUT

PRACTICE EXERCISE 11

amino_acids = [

 'A', 'R', 'N', 'D', 'C', 'E', 'Q', 'G', 'H', 'I',

 'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V'

]

PYTHON

http://127.0.0.1:5929/02-input_output.html#subsec:logicalOperatons

Solution

Solution

Solution

Solution

Conversion to list
As highlighted earlier in this section, arrays in Python can contain any value - regardless of type. We can exploit this feature to extract some
interesting information about the data we store in an array.

To that end, we can convert any sequence to a list. See Table to find out which of the built-in types in Python are considered to be a sequence.

Suppose we have the sequence for Protein Kinase A Gamma (catalytic) subunit for humans as follows:

amino_acid_annotations = amino_acids.copy()

PYTHON

ambiguous_annotations = ['X', 'B', 'Z', 'J']

amino_acid_annotations.extend(ambiguous_annotations)

PYTHON

lengths = [len(amino_acids), len(amino_acid_annotations)]

PYTHON

equivalence = lengths[0] == lengths[1]

print(equivalence)

PYTHON

False

OUTPUT

http://127.0.0.1:5929/02-input_output.html#sec:conversionType
http://127.0.0.1:5929/02-input_output.html#fig:nativeTypes
https://www.ncbi.nlm.nih.gov/protein/AAC41690.1?report=fasta

We can now convert our sequence from its original type of str to list by using list() as a function. Doing so will automatically decompose
the text down into individual characters:

Multiple lines of text may be split into

several lines inside parentheses:

human_pka_gamma = (

 'MAAPAAATAMGNAPAKKDTEQEESVNEFLAKARGDFLYRWGNPAQNTASSDQFERLRTLGMGSFGRVMLV'

 'RHQETGGHYAMKILNKQKVVKMKQVEHILNEKRILQAIDFPFLVKLQFSFKDNSYLYLVMEYVPGGEMFS'

 'RLQRVGRFSEPHACFYAAQVVLAVQYLHSLDLIHRDLKPENLLIDQQGYLQVTDFGFAKRVKGRTWTLCG'

 'TPEYLAPEIILSKGYNKAVDWWALGVLIYEMAVGFPPFYADQPIQIYEKIVSGRVRFPSKLSSDLKDLLR'

 'SLLQVDLTKRFGNLRNGVGDIKNHKWFATTSWIAIYEKKVEAPFIPKYTGPGDASNFDDYEEEELRISIN'

 'EKCAKEFSEF'

)

print(type(human_pka_gamma))

PYTHON

<class 'str'>

OUTPUT

The function "list" may be used to convert string

variables into a list of characters:

pka_list = list(human_pka_gamma)

print(pka_list)

PYTHON

['M', 'A', 'A', 'P', 'A', 'A', 'A', 'T', 'A', 'M', 'G', 'N', 'A', 'P', 'A', 'K', 'K', 'D', 'T', 'E', 'Q', 'E

OUTPUT

Ask the user to enter a sequence of single-letter amino acids in lower case. Convert the sequence to list and:

1. Count the number of serine and threonine residues and display the result in the following format:

Total number of serine residues: XX

Total number of threonine residues: XX

2. Check whether or not the sequence contains both serine and threonine residues:

If it does, display:

The sequence contains both serine and threonine residues.

if it does not, display:

The sequence does not contain both serine and threonine residues.

Solution

sequence_str = input('Please enter a sequence of signle-letter amino acids in lower-case: ')

sequence = list(sequence_str)

ser_count = sequence.count('s')

thr_count = sequence.count('t')

print('Total number of serine residues:', ser_count)

print('Total number of threonine residues:', thr_count)

PRACTICE EXERCISE 12

Solution

if ser_count > 0 and thr_count > 0:

 response_state = ''

else:

 response_state = 'not'

print(

 'The sequence does',

 'response_state',

 'contain both serine and threonine residues.'

)

Generators represent a specific type in Python whose results are not immediately evaluated. A generator is a specific type of iterable
(an object capable of returning elements, one at a time), that can return its items, lazily. This means that it generates values on the fly,
and only as and when required in your program. Generators can be particularly useful when working with large datasets, where loading
all the data into memory can be computationally expensive. Using genarators with such data, can help to process it in more
manageable units.

Generators’ lazy evaluation in functional programming is often used in the context of a for-loop: which we will explore in a later L2D
lesson on iterations. We do not further explore generators on this course, but if you are interested to learn more, you can find plenty of
information in the following official documentation.

Useful methods
Data Structures: More on Lists

In this subsection, we will be reviewing some of the useful and important methods that are associated with object of type list. We will make
use of snippets of code that exemplify such methods, in practice. The linked cheatsheet of the methods associated with the built-in arrays in
Python can be helpful.

ADVANCED TOPIC

https://en.wikipedia.org/wiki/Generator_(computer_programming)
http://127.0.0.1:5929/02-input_output.html#varTypes
https://en.wikipedia.org/wiki/Functional_programming
https://docs.python.org/3.6/howto/functional.html#generators
https://docs.python.org/3.6/tutorial/datastructures.html#more-on-lists

Common operations for list, tuple and set arrays in Python.

The methods outlined here are not individually described; however, at this point, you should be able to work out what they do by looking at their
names and respective examples.

Count a specific value within a list:

Extend a list:

table_a = [1, 2, 2, 2]

table_b = [15, 16]

print(table_a.count(2))

PYTHON

3

OUTPUT

Extend a list by adding two lists to each other. Note: adding two lists to each other is not considered an in-place operation:

We can also reverse the values in a list. There are two methods for doing so. Being a generator means that the output of the function is not
evaluated immediately; and instead, we get a generic output. The first of these two methods is:

1. Through an in-place operation using .reverse()

table_a = [1, 2, 2, 2]

table_b = [15, 16]

table_c = table_a.copy() # deep copy.

table_c.extend(table_b)

print(table_a, table_b, table_c)

PYTHON

[1, 2, 2, 2] [15, 16] [1, 2, 2, 2, 15, 16]

OUTPUT

table_a = [1, 2, 2, 2]

table_b = [15, 16]

table_c = table_a + table_b

print(table_a, table_b, table_c)

PYTHON

[1, 2, 2, 2] [15, 16] [1, 2, 2, 2, 15, 16]

OUTPUT

table_a = [1, 2, 2, 2]

table_b = [15, 16]

table_c = table_a.copy() # deep copy.

table_d = table_a + table_b

print(table_c == table_d)

PYTHON

False

OUTPUT

2. And secondly, using reversed() - which is a built-in generator function.

We can, however, force the evaluation process by converting the generator results into a list:

Members of a list may also be sorted in-place, as follows:

table = [1, 2, 2, 2, 15, 16]

table.reverse()

print("Reversed:", table)

PYTHON

Reversed: [16, 15, 2, 2, 2, 1]

OUTPUT

table = [1, 2, 2, 2, 15, 16]

table_rev = reversed(table)

print("Result:", table_rev)

print("Type:", type(table_rev))

PYTHON

Result: <list_reverseiterator object at 0x7f951f886590>

Type: <class 'list_reverseiterator'>

OUTPUT

table_rev_evaluated = list(table_rev)

print('Evaluated:', table_rev_evaluated)

PYTHON

Evaluated: [16, 15, 2, 2, 2, 1]

OUTPUT

table = [16, 2, 15, 1, 2, 2]

table.sort()

print("Sorted (ascending):", table)

PYTHON

Sorted (ascending): [1, 2, 2, 2, 15, 16]

OUTPUT

There is also a further function built into Python: sorted() . This works in a similar manner to reversed() . Also a generator function, it
offers more advanced features that are beyond the scope of this course. You can find out more about it from the official documentation
and examples.

The .sort() method takes an optional keyword argument entitled reverse (default: False). If set to True, the method will perform a
descending sort:

We can also create an empty list, so that we can add members to it later in our code using .append() , or .extend() or other tools:

ADVANCED TOPIC

table = [16, 2, 15, 1, 2, 2]

table.sort(reverse=True)

print("Sorted (descending):", table)

PYTHON

Sorted (descending): [16, 15, 2, 2, 2, 1]

OUTPUT

table = list()

print(table)

PYTHON

[]

OUTPUT

table.append(5)

print(table)

PYTHON

[5]

OUTPUT

https://docs.python.org/3/library/functions.html#sorted
https://docs.python.org/3/howto/sorting.html#sortinghowto

Create a list, and experiment with each of the methods provided in the above example. Try including members of different types in
your list, and see how each of these methods behave.

Solution

This practice exercise was intended to encourage you to experiment with the methods outlined.

Nested Arrays
At this point, you should be comfortable with creating, handling and manipulating arrays of type list, in Python. It is important to have a
foundational understanding of the principles outlined in this section so far, before starting to learn about nested arrays.

We have already established that arrays can contain any value - regardless of type. This means that they can also contain other arrays. An
array that includes at least one member that is, itself, an array is referred to as a nested array. This can be thought of as a table with more than
one column:

another_table = ['Jane', 'Janette']

table.extend(another_table)

print(another_table)

PYTHON

['Jane', 'Janette']

OUTPUT

PRACTICE EXERCISE 13

Arrays can contain values of any type. This rule applies to nested arrays too. We have exclusively included int numbers in our table in
order to simplify the above example.

Implementation
The table can be written in Python as a nested array:

Indexing
The indexing principles for nested arrays are slightly different to those we have familiarised with, up to this point. To retrieve an individual
member in a nested list, we always reference the row index, followed by the column index.

REMEMBER

The list has 3 members, 2 of which

are arrays of type list:

table = [[1, 2, 3], 4, [7, 8]]

print(table)

PYTHON

[[1, 2, 3], 4, [7, 8]]

OUTPUT

We may visualise the process as follows:

To retrieve an entire row, we only need to include the reference for that row. All the values within the row are referenced, implicitly:

and to retrieve a specific member, we include the reference for both the row and column:

We may also extract slices from a nested array. The protocol is identical to normal arrays, described in the previous section of this lesson on
slicing. In nested arrays, however, we may take slices from the columns as well as the rows:

print(table[0])

PYTHON

[1, 2, 3]

OUTPUT

print(table[0][1])

PYTHON

2

OUTPUT

Note that only 2 of the 3 members in table are arrays of type list:

However, there is another member that is not an array:

In most circumstances, we would want all the members in an array to be homogeneous in type — i.e. we want them all to have the same type. In
such cases, we can implement the table as:

print(table[:2])

PYTHON

[[1, 2, 3], 4]

OUTPUT

print(table[0][:2])

PYTHON

[1, 2]

OUTPUT

print(table[0], type(table[0]))

PYTHON

[1, 2, 3] <class 'list'>

OUTPUT

print(table[2], type(table[2]))

PYTHON

[7, 8] <class 'list'>

OUTPUT

print(table[1], type(table[1]))

PYTHON

4 <class 'int'>

OUTPUT

An array with only one member — e.g. [4], is sometimes referred to as a singleton array.

Given the following Table of pathogens and their corresponding diseases:

1. Substitute N/A for None, and create an array to represent the table in its presented order. Retain the array in a variable, and display
the result.

2. Modify the array you created so that its members are sorted descendingly, and display the result.

table = [[1, 2, 3], [4], [7, 8]]

print(table[1], type(table[1]))

PYTHON

[4] <class 'list'>

OUTPUT

PRACTICE EXERCISE 14

Solution

Solution

Dimensions
A nested array is considered two-dimensional or 2D when:

All of its members in a nested array are arrays, themselves;

All sub-arrays are of equal length — i.e. all the columns in the table are filled and have the same number of rows; and,

All members of the sub-arrays are homogeneous in type — i.e. they all have the same type (e.g. int).

disease_pathogen = [

 ["Bacterium", "Negative", "Shigella flexneri" , "Bacillary dysentery"],

 ["Prion", None, "PrP(sc)", "Transmissible spongiform encephalopathies"],

 ["Bacterium", "Negative", "Vibrio cholerae", "Cholera"],

 ["Bacterium", "Negative", "Listeria monocytogenes", "Listeriosis"],

 ["Virus", None, "Hepatitis C", "Hepatitis"],

 ["Bacterium", "Negative", "Helicobacter pylori", "Peptic ulcers"],

 ["Bacterium", "Negative", "Mycobacterium tuberculosis", "Tuberculosis"],

 ["Bacterium", "Negative", "Chlamydia trachomatis", "Chlamydial diseases"],

 ["Virus", None, "Human Immunodeficiency Virus", "Human Immunodeficiency"]

]

print(disease_pathogen)

PYTHON

[['Bacterium', 'Negative', 'Shigella flexneri', 'Bacillary dysentery'], ['Prion', None, 'PrP(sc)', 'Trans

OUTPUT

disease_pathogen.sort(reverse=True)

print(disease_pathogen)

PYTHON

[['Virus', None, 'Human Immunodeficiency Virus', 'Human Immunodeficiency'], ['Virus', None, 'Hepatitis C

OUTPUT

A two dimensional arrays may be visualised as follows:

Nested arrays may, themselves, be nested. This means that, if needed, we can have 3, 4 or n dimensional arrays, too. Analysis and
organisation of such arrays is an important part of a field known as optimisation in computer science and mathematics. Optimisation is
the cornerstone of machine learning, and addresses the problem known as curse of dimensionality.

Such arrays are referred to in mathematics as a matrix. We can therefore represent a two-dimensional array as a mathematical matrix. To that
end, the above array would translate to the annotation displayed in equation below.

The implementation of these arrays is identical to the implementation of other nested arrays. We can therefore code our table in Python as:

ADVANCED TOPIC

table =

⎡

⎣
⎢

1

4

7

2

5

8

3

6

9

⎤

⎦
⎥

table = [

 [1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]

]

print(table)

PYTHON

https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Matrix_(mathematics)

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

OUTPUT

print(table[2])

PYTHON

[7, 8, 9]

OUTPUT

print(table[1][0])

PYTHON

4

OUTPUT

print(table[:2])

PYTHON

[[1, 2, 3], [4, 5, 6]]

OUTPUT

Computers see images as multidimensional arrays (matrices). In its simplest form, an image is a two-dimensional array containing only
two colours.

Given the following black and white image:

1. Considering that black and white squares represent zeros and ones respectively, create a two-dimensional array to represent the
image. Display the results.

2. Create a new array, but this time use False and True to represent black and white respectively.

Display the results.

Solution

PRACTICE EXERCISE 15

cross = [

 [0, 0, 0, 0, 0, 0, 0],

 [0, 1, 0, 0, 0, 1, 0],

 [0, 0, 1, 0, 1, 0, 0],

 [0, 0, 0, 1, 0, 0, 0],

 [0, 0, 1, 0, 1, 0, 0],

 [0, 1, 0, 0, 0, 1, 0],

 [0, 0, 0, 0, 0, 0, 0]

]

print(cross)

PYTHON

[[0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 1, 0,

OUTPUT

Solution

Summary
At this point, you should be familiar with arrays and how they work, in general. Throughout this section, we extensively covered the Python
list, which is one of the language’s most popular types of built-in arrays. We also learned:

How to list from the scratch;

How to manipulate a list using different methods;

How to use indexing and slicing techniques to our advantage;

Mutability — a concept we revisit in the forthcoming lessons;

In-place operations, and the difference between weak references and deep copies;

Nested and multi-dimensional arrays; and,

How to convert other sequences (e.g. str) to list.

Tuple
Data Structures: Tuples and Sequences

Another of Python’s built-in array types is called a tuple. A tuple is an immutable alternative to list. That is, once a tuple has been created, its
contents cannot be modified in any way. Tuples are often used in applications where it is imperative that the contents of an array cannot be
changed.

For instance, we know that in the Wnt signaling pathway, there are two co-receptors. This is final, and would not change at any point in our
program.

cross_bool = [

 [False, False, False, False, False, False, False],

 [False, True, False, False, False, True, False],

 [False, False, True, False, True, False, False],

 [False, False, False, True, False, False, False],

 [False, False, True, False, True, False, False],

 [False, True, False, False, False, True, False],

 [False, False, False, False, False, False, False]

]

print(cross_bool)

PYTHON

[[False, False, False, False, False, False, False], [False, True, False, False, False, True, False], [Fal

OUTPUT

https://docs.python.org/3.6/tutorial/datastructures.html#tuples-and-sequences
http://www.cell.com/cell/fulltext/S0092-8674(12)00586-7

The most common way to implement a tuple in Python, is to place our comma-separated values inside round parentheses: (1, 2, 3, …).
While there is no specific theoretical term for a tuple instantiated with round parentheses, we can refer to this type of tuple as an
explicit tuple.

You can also instantiate a tuple without parentheses, as well: (1, 2, 3, …). In this case, Python acknowledges that a tuple is implied, and
is therefore assumed. Thus, we often refer to this type of tuple as an implicit tuple, and these are created using an operation called
packing.

For the time being, we will be making use of explicit tuples, as they are the clearest and most explicit in annotation, and therefore easiest to
program with and recognise.

Similarly, we can briefly demonstrate that removing round parentheses, or instantiating a implicit tuple, is categorised in the same way, in
Python:

REMEMBER

pathway = 'Wnt Signaling'

coreceptors = ('Frizzled', 'LRP')

print(type(coreceptors))

PYTHON

<class 'tuple'>

OUTPUT

print(coreceptors)

PYTHON

('Frizzled', 'LRP')

OUTPUT

wnt = (pathway, coreceptors)

print(type(wnt))

PYTHON

<class 'tuple'>

OUTPUT

Indexing and slicing principles for a tuple are identical to those of a list, aforementioned in this lesson’s subsections on indexing and slicing.

Conversion to tuple
Similar to list, we can convert other sequences to tuple:

print(wnt)

PYTHON

('Wnt Signaling', ('Frizzled', 'LRP'))

OUTPUT

print(wnt[0])

PYTHON

Wnt Signaling

OUTPUT

numbers_list = [1, 2, 3, 4, 5]

print(type(numbers_list))

PYTHON

<class 'list'>

OUTPUT

numbers = tuple(numbers_list)

print(numbers)

PYTHON

(1, 2, 3, 4, 5)

OUTPUT

print(type(numbers))

PYTHON

<class 'tuple'>

OUTPUT

Immutability
In contrast with list, however, if we attempt to change the contents of a tuple, a TypeError is raised:

Even though tuple is an immutable type, it can contain both mutable and immutable objects:

text = 'This is a string.'

print(type(text))

PYTHON

<class 'str'>

OUTPUT

characters = tuple(text)

print(characters)

PYTHON

('T', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 's', 't', 'r', 'i', 'n', 'g', '.')

OUTPUT

print(type(characters))

PYTHON

<class 'tuple'>

OUTPUT

coreceptors[1] = 'LRP5/6'

PYTHON

TypeError: 'tuple' object does not support item assignment

OUTPUT

(immutable, immutable, immutable, mutable)

mixed_tuple = (1, 2.5, 'abc', (3, 4), [5, 6])

print(mixed_tuple)

PYTHON

and mutable objects inside a tuple may still be changed:

Why and how can we change mutable objects inside a tuple, when a tuple is considered to be an immutable data structure:

Members of a tuple are not directly stored in memory. An immutable value (e.g. an integer: int) has an existing, predefined reference,
in memory. When used in a tuple, it is this reference that is associated with the tuple, and not the value itself. On the other hand, a
mutable object does not have a predefined reference in memory, and is instead created on request somewhere in your computer’s
memory (wherever there is enough free space).

While we can never change or redefine a predefined reference, we can always manipulate something we have defined ourselves. When
we make such an alteration, the location of our mutable object in memory may well change, but its reference — which is what is stored
in a tuple, remains identical. In Python, it is possible to discover the reference an object is using, with the function id(). Upon
experimenting with this function, you will notice that the reference to an immutable object (e.g. an int value) will never change, no
matter how many times you define it in a different context or variable. In contrast, the reference number to a mutable object (e.g. a list)
is changed every time it is defined, even if it contains exactly the same values.

(1, 2.5, 'abc', (3, 4), [5, 6])

OUTPUT

print(mixed_tuple, type(mixed_tuple))

PYTHON

(1, 2.5, 'abc', (3, 4), [5, 6]) <class 'tuple'>

OUTPUT

print(mixed_tuple[4], type(mixed_tuple[4]))

PYTHON

[5, 6] <class 'list'>

OUTPUT

ADVANCED TOPIC

Lists are mutable, so we can alter their values:

mixed_tuple[4][1] = 15

print(mixed_tuple)

PYTHON

Tuples may be empty or have a single value (singleton):

(1, 2.5, 'abc', (3, 4), [5, 15])

OUTPUT

mixed_tuple[4].append(25)

print(mixed_tuple)

PYTHON

(1, 2.5, 'abc', (3, 4), [5, 15, 25])

OUTPUT

We cannot remove the list from the tuple,

but we can empty it by clearing its members:

mixed_tuple[4].clear()

print(mixed_tuple)

PYTHON

(1, 2.5, 'abc', (3, 4), [])

OUTPUT

member_a = tuple()

print(member_a, type(member_a), len(member_a))

PYTHON

() <class 'tuple'> 0

OUTPUT

Empty parentheses also generate an empty tuple.

Remember: we cannot add values to an empty tuple, later.

member_b = ()

print(member_b, type(member_b), len(member_b))

PYTHON

() <class 'tuple'> 0

OUTPUT

Packing and unpacking
As previously discussed, a tuple may also be constructed without parentheses. This is an implicit operation and is known as packing.

Implicit processes must be used sparingly. As always, the more coherent the code, the better it is.

Singleton - Note that it is essential to include

a comma after the value in a single-member tuple:

member_c = ('John Doe',)

print(member_c, type(member_c), len(member_c))

PYTHON

('John Doe',) <class 'tuple'> 1

OUTPUT

If the comma is not included, a singleton tuple

is not constructed:

member_d = ('John Doe')

print(member_d, type(member_d), len(member_d))

PYTHON

John Doe <class 'str'> 8

OUTPUT

REMEMBER

numbers = 1, 2, 3, 5, 7, 11

print(numbers, type(numbers), len(numbers))

PYTHON

(1, 2, 3, 5, 7, 11) <class 'tuple'> 6

OUTPUT

The reverse of this process is known as unpacking. Unpacking is no longer considered an implicit process because it replaces unnamed values
inside an array, with named variables:

Note that for a singleton, we still need to

include the comma.

member = 'John Doe',

print(member, type(member), len(member))

PYTHON

('John Doe',) <class 'tuple'> 1

OUTPUT

dimensions = 14, 17, 12

x, y, z = dimensions

print(x)

PYTHON

14

OUTPUT

print(x, y)

PYTHON

14 17

OUTPUT

member = ('Jane Doe', 28, 'London', 'Student', 'Female')

name, age, city, status, gender = member

print('Name:', name, '- Age:', age)

PYTHON

Name: Jane Doe - Age: 28

OUTPUT

Given:

Unpack protein_info into two distinct variables: protein_name and protein_length.

Solution

There is another type of tuple in Python referred to as a namedtuple. This allows for the members of a tuple to be named
independently (e.g. member.name or member.age), and thereby eliminates the need for unpacking. It was originally implemented by
Raymond Hettinger, one of Python’s core developers, for Python 2.4 (in 2004) but was neglected at the time. It has since gained
popularity as a very useful tool. namedtuple is not a built-in tool, so it is not discussed here. However, it is included in the default library
and is installed as a part of Python. If you are feeling ambitious and would like to learn more, please take a look at the official
documentations and examples. Raymond is also a regular speaker at PyCon (International Python Conferences), recordings of which
are available online. He also often uses his Twitter/X account to talk about small, but important features in Python; which could be
worth throwing him a follow.

Summary
In this section of our Basic Python 2 lesson, we learned about tuple - another type of built-in array within Python, and one which is immutable.
This means that once it is created, the array can no longer be altered. We saw that trying to change the value of a tuple raises a TypeError.
We also established that list and tuple follow an identical indexing protocol, and that they have 2 methods in common: .index()() and
.count() . Finally, we talked about packing and unpacking techniques, and how they improve the quality and legibility of our code.

If you are interested in learning about list and tuple in more depth, have a look at the official documentation of Sequence Types – list, tuple,
range.

Graph theory was initially developed by the renowned Swiss mathematician and logician Leonhard Euler (1707 – 1783). Howeve
graphs, in the sense discussed here, were introduced by the English mathematician James Joseph Sylvester (1814 – 1897).

PRACTICE EXERCISE 16

protein_info = ('GFP', 238)

PYTHON

protein_name, protein_length = protein_info

PYTHON

NOTE

INTERESTING FACT

https://twitter.com/raymondh
https://docs.python.org/3.6/library/collections.html#collections.namedtuple
https://docs.python.org/3.6/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

Exercises

1. We have

table = [[1, 2, 3], ['a', 'b'], [1.5, 'b', 4], [2]]

What is the length of table and why?

Store your answer in a variable and display it using print() .

2. Given the sequence for the Gamma (catalytic) subunit of the Protein Kinase A as:

human_pka_gamma = (

 'MAAPAAATAMGNAPAKKDTEQEESVNEFLAKARGDFLYRWGNPAQNTASSDQFERLRTLGMGSFGRVML'

 'VRHQETGGHYAMKILNKQKVVKMKQVEHILNEKRILQAIDFPFLVKLQFSFKDNSYLYLVMEYVPGGEM'

 'FSRLQRVGRFSEPHACFYAAQVVLAVQYLHSLDLIHRDLKPENLLIDQQGYLQVTDFGFAKRVKGRTWT'

 'LCGTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAVGFPPFYADQPIQIYEKIVSGRVRFPSKLSSDLK'

 'DLLRSLLQVDLTKRFGNLRNGVGDIKNHKWFATTSWIAIYEKKVEAPFIPKYTGPGDASNFDDYEEEEL'

 'RISINEKCAKEFSEF'

)

Using the sequence;

Work out and display the number of Serine (S) residues.

Work out and display the number of Threonine (T) residues.

Calculate and display the total number of Serine and Threonine residues in the following format:

Serine: X

Threonine: X

Create a nested array to represent the following table, and call it :

END OF CHAPTER EXERCISES

3. Explain why in the previous question, we used the term nested instead of two-dimensional in reference to the array? Store your
answer in a variable and display it using print() .

4. Graph theory is a prime object of discrete mathematics utilised for the non-linear analyses of data. The theory is extensively used in
systems biology, and is gaining momentum in bioinformatics too. In essence, a graph is a structure that represents a set of object
(nodes) and the connections between them (edges).

The aforementioned connections are described using a special binary (zero and one) matrix known as the adjacency matrix. The
elements of this matrix indicate whether or not a pair of nodes in the graph are adjacent to one another.

where each row in the matrix represents a node of origin in the graph, and each column a node of destination:

 If the graph maintains a connection (edge) between two

nodes (e.g. between nodes A and B in the graph above), the corresponding value between those nodes would be #1 in the matrix, and if
there are no connections, the corresponding value would #0.

https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Adjacency_matrix

Given the following graph:

Determine the adjacency matrix and implement it as a two-dimensional array in Python. Display the final array.

Solution

lists and tuples are 2 types of arrays.

An index is a unique reference to a specific value and Python uses a zero-based indexing system.

lists are mutable because their contents can be modified.

slice() , .pop() , .index() , .remove() and .insert() are some of the key functions used in mutable arrays.

tuples are immutable, which means that their contents cannot be modified.

KEY POINTS

