
Iterations
Last updated on 2024-08-09 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

For Loop with Python ListFor Loop with Python List

OVERVIEW

Questions

What do we mean by iterations and loops?

How are for-loops implemented?

Can conditional statements be used in iterations?

What are while-loops, and how these used?

Objectives

Understanding the concepts behind iterations and loops.

Learning the processes involved in for-loops implementation.

Building conditional statements into loops.

Understanding the concept of while-loops, and when to use them.

Basic Python

https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/05-iterations.Rmd
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/05-iterations.Rmd
http://127.0.0.1:3321/05-iterations.pdf
http://127.0.0.1:3321/05-iterations.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1
https://www.youtube.com/watch?v=40mryCzIBwc

For Loop through Numpy arrayFor Loop through Numpy array

This chapter assumes that you are familiar with the following concepts in Python:

I/O Operations

Variables and Types

Mathematical Operation

Logical Operations

Indentation Rule

Conditional Statements

Arrays

Additionally, make sure that you are comfortable with the principles of indexing in arrays before commencing this lesson. It is very
important that you have a good understanding of arrays and sequences, because the concept of iteration in programming deals almost
exclusively with these subjects.

You can practice everything in this lesson as you have been doing so far. However, if you �nd it hard to grasp some of the
concepts, do not worry. It takes practice. To help you with that, Philip Guo from UC San Diego (Calif., USA) has developed
PythonTutor.com - an excellent online tool for learning Python. On that website, write, or paste your code into the editor, and
click Visualize Execution. In the new page, use the forward and back buttons to see a step-by-step graphical visualisation of
the processes that occur during the execution of your code. Try it on the examples in this section.

PREREQUISITE

NOTE

https://www.youtube.com/watch?v=-Ex4JtqhWLw
http://127.0.0.1:3321/02-input_output.html#operations
http://127.0.0.1:3321/02-input_output.html#varTypes
http://127.0.0.1:3321/02-input_output.html#math_ops
http://127.0.0.1:3321/02-input_output.html#subsec:logicalOperatons
http://127.0.0.1:3321/03-conditional_statements.html#subsubsec:indentationRule
http://127.0.0.1:3321/03-conditional_statements.html
http://127.0.0.1:3321/04-arrays.html
http://127.0.0.1:3321/04-arrays.html#sec:list:indexing
http://www.pgbovine.net/
http://www.pythontutor.com/visualize.html#mode=edit

The concept

We make use of iterations and loops in programming to perform repetitive operations. A repetitive operation is where one or several
de�ned operations that are repeated multiple times.

For instance, suppose we have a list of 5 numbers as follows:

numbers = [-3, -2, 5, 0, 12]

Now we would like to multiply each number by 2. Based on what we have learned thus far, this is how we would approach this
problem:

Whilst this does the job, it is clearly very tedious. Furthermore, if we have an array of several thousand members, this approach quickly
becomes infeasible.

The process of multiplying individual members of our array by 2 is a very simple example of a repetitive operations.

In programming, there is a universally appreciated golden principle known as the DRY rule; and this is what it stands for:

Don’t Repeat Yourself

So if you �nd yourself doing something again and again, it is fair to assume that there might a better way of getting the results
you’re looking for.

Some programmers (with questionable motives) have created WET rule too. Find out more about DRY and WET from
Wikipedia.

There are some universal tools for iterations that exist in all programming languages — e.g. for and while -loops. There are also
other tools such as vectorisation or generators, that are often unique to one or several speci�c programming languages.

numbers = [-3, -2, 5, 0, 12]

numbers[0] *= 2

numbers[1] *= 2

numbers[2] *= 2

numbers[3] *= 2

numbers[4] *= 2

print(numbers)

PYTHON

[-6, -4, 10, 0, 24]

OUTPUT

REMEMBER

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

In this section of the lesson, we will discuss iterations via for and while -loops, and review some real-world examples that may only
be addressed using iterative processes.

for-loops

There is evidence that up to 80% of all conventional iterations are implemented as for -loops. Whether or not it is the best choice in of
all these cases is subject to opinion. What is important, however, is to learn the difference between the two methods, and feel
comfortable with how they work.

Implementation of for -loops in Python is simple compared to other programming languages. It essentially iterates through an existing
iterable variable — (such as an array) and retrieves the values from it one by one, from the beginning through to the end.

In Python, iterable is a term used to refer to a variable that can be iterated through. Any variable type that can be used in a
for -loop without any modi�cations, is therefore considered an iterable.

Most arrays and sequences are iterable. See Table to �nd out which native types in Python are iterable. A rule of thumb is that
if an array or a sequence is numerically indexed (e.g. list, tuple, or str), then it is considered an iterable.

Flowchart of a for–loop work�ow applied to a list array.

Figure illustrates a �owchart to visualise the work�ow of an iterative process using for -loops in Python. The process depicted in the
�owchart may be described as follows:

REMEMBER

http://127.0.0.1:3321/02-input_output.html#fig:nativeTypes

1. A for-loop is initialised using an array or a sequence, and begins its process by sequentially going through the values,
starting at the array’s �rst row.

2. Iterative Process: The value of the current row is retrieved and given the alias item, which now represents a single variable
within the context of the loop.

3. Repetitive Operation(s): Designated operations are performed using the value of item:

item *= 2

4. Loop Condition: The for -loop automatically checks whether or not it has reached the last row of the sequence.
Depending on the outcome of this check:

NO (last value not reached): Move onto the next row and repeat the process from step 2.

YES (last value reached): Exit the loop.

We write this process in Python as follows:

We can see that the result for each iteration is displayed on a new line. Example outlines other such applications and expands on
repetitive operations that may be simpli�ed using for -loops.

PROCESS

numbers = [3, 5, 6.3, 9, 15, 3.4]

for item in numbers:

 item *= 2

 # Display the item to see the results:

 print(item)

PYTHON

6

10

12.6

18

30

6.8

OUTPUT

An iterable is a Python variable that contains the built–in method .__iter__(). Methods starting and ending with two
underscores (dunderscores) are also known as magic methods in Python. See the of�cial Python documentations for additional
information.

A for -loop is always initialised as:

for variable_name in an_array:

 # An indented block of processes

 # we would like to perform on the

 # members of our array one by one.

where an_array is an iterable variable, and variable_name is the name of the variable we temporarily assign to a member
of an_array that corresponds to the current loop cycle (iteration). The number of loop cycles performed by a for -loop is
equal to the length (number of members) of the array that we are iterating through, which in this case is called an_array.

You can think of each iteration cycle as pulling out a row from the table that is our array (as exempli�ed in the lesson on arrays)
and temporarily assigning its corresponding value to a variable until the next iteration cycle.

See subsection List Members to �nd the length of an array.

Given:

write a for -loop to display each item in peptides alongside its index and length. Display the results in the following format:

Peptide XXXX at index X contains X amino acids.

ADVANCED TOPIC

REMEMBER

PRACTICE EXERCISE 1

peptides = [

 'GYSAR',

 'HILNEKRILQAID',

 'DNSYLY'

]

PYTHON

https://docs.python.org/3/tutorial/classes.html#iterators
http://127.0.0.1:3321/04-arrays.html
http://127.0.0.1:3321/04-arrays.html#listMem

Solution

for sequence in peptides:

 length = len(sequence)

 index = peptides.index(sequence)

 print('Peptide', sequence, 'at index', index, 'contains', length, 'amino acids.')

PYTHON

Peptide GYSAR at index 0 contains 5 amino acids.

Peptide HILNEKRILQAID at index 1 contains 13 amino acids.

Peptide DNSYLY at index 2 contains 6 amino acids.

OUTPUT

When using a for -loop, we can also reference other variables that have already been de�ned outside of the loop block:

It is also possible to de�ne new variables inside the loop, but remember that the value of any variables de�ned inside a loop is
reset with each iteration cycle:

EXTENDED EXAMPLE OF ITERATIONS USING for-LOOPS

numbers = [3, 5, 6.3, 9, 15, 3.4]

counter = 0

for item in numbers:

 item *= 2

 # Display the item to see the results:

 print('Iteration number', counter, ':', item)

 counter += 1

PYTHON

Iteration number 0 : 6

Iteration number 1 : 10

Iteration number 2 : 12.6

Iteration number 3 : 18

Iteration number 4 : 30

Iteration number 5 : 6.8

OUTPUT

numbers = [3, 5, 6.3, 9, 15, 3.4]

counter = 0

for item in numbers:

 new_value = item * 2

 # Display the item to see the results:

 print('Iteration number', counter, ':', item, '* 2 =', new_value)

 counter += 1

PYTHON

Write a for-loop to display the values of a tuple de�ned as:

such that each protein is displayed on a new line and follows the phrase Protein Kinase X: as in

Protein Kinase 1: PKA

Protein Kinase 2: PKC

and so on.

Iteration number 0 : 3 * 2 = 6

Iteration number 1 : 5 * 2 = 10

Iteration number 2 : 6.3 * 2 = 12.6

Iteration number 3 : 9 * 2 = 18

Iteration number 4 : 15 * 2 = 30

Iteration number 5 : 3.4 * 2 = 6.8

OUTPUT

PRACTICE EXERCISE 2

protein_kinases = ('PKA', 'PKC', 'MPAK', 'GSK3', 'CK1')

PYTHON

Solution

Retaining the new values
It is nice to be able to manipulate and display the values of an array but in the majority of cases, we need to retain the new values and
use them later.

In such cases, we have two options:

Create a new array to store our values.
Replace the existing values with the new ones by overwriting them in the same array.

Creating a new array to store our values is very easy. We must �rstly create a new list and add values to it with each iteration. In
other words, we start off by creating an empty list; to which we then iteratively add members using the .append() method inside
our for -loop. The process of creating a new list and using the .append() method to values to an existing list are discussed in
Useful Methods and mutability, respectively.

counter = 1

for protein in protein_kinases:

 print('Protein Kinase ', counter, ': ', protein, sep='')

 counter += 1

PYTHON

Protein Kinase 1: PKA

Protein Kinase 2: PKC

Protein Kinase 3: MPAK

Protein Kinase 4: GSK3

Protein Kinase 5: CK1

OUTPUT

numbers = [-4, 0, 0.3, 5]

new_numbers = list()

for value in numbers:

 squared = value ** 2

 new_numbers.append(squared)

print('numbers:', numbers)

PYTHON

numbers: [-4, 0, 0.3, 5]

OUTPUT

http://127.0.0.1:3321/04-arrays.html#subsubsec:list:usefulMethodsForList
http://127.0.0.1:3321/04-arrays.html#subsubsec:list:mutability

Given:

write a for-loop in which you determine the length of each sequence in peptides, and then store the results as a list of
tuple items as follows:

[('SEQUENCE_1', X), ('SEQUENCE_2', X), ...]

Solution

The replacement method uses a slightly different approach. Essentially, what we are trying to achieve is:

Read the value of an item in an array;
Manipulate the value via operations;
Return the value back into the original array through item assignment, thereby replacing the existing value.

print('new_numbers:', new_numbers)

PYTHON

new_numbers: [16, 0, 0.09, 25]

OUTPUT

PRACTICE EXERCISE 3

peptides = [

 'GYSAR',

 'HILNEKRILQAID',

 'DNSYLY'

]

PYTHON

peptides_with_length = list()

for sequence in peptides:

 length = len(sequence)

 item = (sequence, length)

 peptides_with_length.append(item)

PYTHON

We learned about modifying an existing value in a list in our discussion of mutability, where we discussed the concept of item
assignment. The process of replacing the original values of an array in a for -loop is identical. An important point to be aware of,
however, is that we make use of the correct index for the speci�c item in the array that we are trying to modify. Additionally, don’t forget
that item assignment is only possible in mutable arrays such as list. See Table to see which types of array are mutable in Python.

To perform item assignment; we can use a variable to represent the current iteration cycle in our for -loop. We do so by initialising the
variable with a value of 0, and adding 1 to its value at the end of each cycle. We can then use that variable as an index in each iteration
cycle:

The enumerate() function actually returns a generator of tuple items each time it is called in the context of a for-loop. A
generator is, in principle, similar to a normal array; however, unlike an array, the values of a generator are not evaluated by the
computer until the exact time at which they are going to be used. This is an important technique in functional programming
known as lazy evaluation. It is primarily utilised to reduce the workload on the computer (both the processor and the memory)
by preventing the execution of processes that could otherwise be delayed to a later time. In the case of the enumerate()
function, the values are evaluated at the beginning of each iteration cycle in a for-loop. Learn more about lazy evaluation in
Wikipedia or read more on generators in Python in the of�cial documentations.

This is a perfectly valid approach and it is used in many programming languages. However, Python makes this process even easier by
introducing the function enumerate() . We often use this function at the initiation of a for -loop. The function takes an array as an
input and as the name suggests, enumerates them; thereby simplifying the indexing process. The previous example may, therefore, be
written more concisely in Python, as follows:

numbers = [-4, 0, 0.5, 5]

Variable representing the

index (iteration cycle):

index = 0

for value in numbers:

 new_value = value ** 5

 # Putting it back into

 # the original array:

 numbers[index] = new_value

 # Adding one to the index for

 # the next iteration cycle:

 index += 1

print(numbers)

PYTHON

[-1024, 0, 0.03125, 3125]

OUTPUT

ADVANCED TOPIC

http://127.0.0.1:3321/04-arrays.html#subsubsec:list:mutability
http://127.0.0.1:3321/02-input_output.html#fig:nativeTypes
https://en.wikipedia.org/wiki/Lazy_evaluation
https://docs.python.org/3/howto/functional.html#generators

Given:

Display each item in characters as many times in one line as the index of that item in characters. The results should appear as
follows:

2

33

444

numbers = [-4, 0, 0.5, 5]

for index, value in enumerate(numbers):

 # Manipulating the value:

 new_value = value ** 5

 numbers[index] = new_value

print(numbers)

PYTHON

[-1024, 0, 0.03125, 3125]

OUTPUT

PRACTICE EXERCISE 4

characters = ['1', '2', '3', '4']

PYTHON

Solution

for-loop and conditional statements
We can use conditional statements within for -loops to account for and handle different situations.

Suppose we want to �nd the smallest value (the minimum) within a list of numbers using a for -loop. The work�ow of this process is
displayed as a �owchart diagram in �gure below.

Given an array, we can break down the problem as follows:

for index, item in enumerate(characters):

 print(item * index)

PYTHON

2

33

444

OUTPUT

Finally, we can implement the process displayed in �gure as follows:

numbers = [7, 16, 0.3, 0, 15, -4, 5, 3, 15]

minimum = numbers[0]

for value in numbers:

 if value < minimum:

 minimum = value

print('The minimum value is:', minimum)

PYTHON

The minimum value is: -4

OUTPUT

Given:

Using a for-loop and a conditional statement, �nd and display the sequences in peptides that contain the amino acid serine
(S) in the following format:

Found S in XXXXX.

Solution

Sequence of numbers in for-loops
In order to produce a sequence of int numbers for use in a for -loop, we can use the built-in range() function. The function takes in
three positional arguments representing start, stop, and step. Note that range() is only capable of producing a sequence of integer

PRACTICE EXERCISE 5

peptides = [

 'FAEKE',

 'CDYSK',

 'ATAMGNAPAKKDT',

 'YSFQW',

 'KRFGNLR',

 'EKKVEAPF',

 'GMGSFGRVML',

 'YSFQMGSFGRW',

 'YSFQMGSFGRW'

]

PYTHON

target = 'S'

for sequence in peptides:

 if target in sequence:

 print('Found', target, 'in', sequence)

PYTHON

Found S in CDYSK

Found S in YSFQW

Found S in GMGSFGRVML

Found S in YSFQMGSFGRW

Found S in YSFQMGSFGRW

OUTPUT

numbers.

The range() function does not create the sequence of numbers immediately. Rather, it behaves in a similar way to the
enumerate() function does (as a generator).

Displaying the output of the range() function is not an array of numbers, as you might expect:

It is, however, possible to evaluate the values outside of a for -loop. To do so, we need to convert the output of the function to list or
a tuple:

The range() function is non-inclusive. That is, it creates a sequence that starts from and includes the value given as the start
argument, up to but excluding the value of the end argument. For instance, range(1, 5, 1) creates a sequence starting from 1,
which is then incremented 1 step at a time right up to 5, resulting in a sequence that includes the following numbers: 1, 2, 3, 4

REMEMBER

range_generator = range(0, 10, 2)

print(range_generator)

PYTHON

range(0, 10, 2)

OUTPUT

range_sequence = list(range_generator)

print(range_sequence)

PYTHON

[0, 2, 4, 6, 8]

OUTPUT

REMEMBER

EXAMPLE: SEQUENCE COMPARISON, DOT PLOTS AND for LOOPS

while-loops

In our discussion of for loop mediated iterations above, we learned that they are exclusively applied to iterable objects — such as
arrays and sequences. This is because, as demonstrated in work�ow �gure, at the end of each iteration, the implicit termination
condition that is inherent in the process tests whether or not the end of the sequence being iterating through, has been reached.

It may, however, be deemed necessary to apply iterative processes based on conditions other than those embedded within the for-
loop. In such cases, we use a different class of iterations known as a while-loop.

Consider the following:

We want to ask a user to enter a sequence of exactly �ve amino acids in single-letter code. If the
provided sequence is more or less than �ve letters long, we would like to display a message and ask
them to try again; otherwise, we will display the process and terminate the program.

It is impossible to write such a process using a for-loop. This is because when we initialise the iteration process in a for-loop, the
number of loops we need is unknown. In other words, we simply do not know how many times the user would need enter said sequence
before they get it right.

To simplify the understanding of the concept, we can visualise the process in a �owchart, as displayed in �gure. In this �owchart, you
can see that the only way to exit the loop is to enter a sequence of exactly �ve characters. Doing anything else — such as entering a
different number of letters – is equivalent to going back to the beginning of the loop. The process may be described verbally as follows:

1. Initialise the variable sequence and assign an empty string to it.

2. While the length of sequence is not equal to 5:

Ask the user to enter a new sequence.
Go back to step #2.

3. Display the value of sequence.

Implementation
We instantiate while-loop using the while syntax, immediately followed by the loop condition.

We can now implement the process displayed in �gure as follows:

sequence = str()

while len(sequence) != 5:

 sequence = input('Enter a sequence of exactly 5 amino acids: ')

print(sequence)

When executed, the above code will prompt the user to enter a value:

Enter a sequence of exactly 5 amino acids: GCGLLY

Enter a sequence of exactly 5 amino acids: GCGL

Enter a sequence of exactly 5 amino acids: GC

Enter a sequence of exactly 5 amino acids: GCGLL

GCGLL

As expected, the user is repetitively asked to enter a �ve-character sequence until they supply the correct number of letters.

1. Write a script which prompts the user to enter a number, then:

If the second power of the number is smaller than 10, repeat the process and ask again;

If the second power of the number is equal or greater than 10, display the original value and terminate the program.

Hint: Don’t forget to convert the value entered by the user to an appropriate numeric type before you perform any
mathematical operations.

2. We learned in subsection Sequence of Numbers that the built-in function range() may be utilised to produce a sequence
of integer numbers. The function takes 3 input arguments in the following order: stop, start, step.

We now need a sequence of �oating-point numbers with the following criteria:

stop = 10

start = 0

step = 0.5

The use of a �oating-point number as step means that we cannot use range() to create the desired sequence. Write a script
in which you use a while-loop to produce a sequence of �oating-point numbers with the above criteria and display the result.

The resulting sequence must be:

Presented as an instance of type list;

Similar to range() , the sequence must be non-inclusive — i.e. it must include the value of start, but not that of stop.

Solution

value = 0

while value ** 2 < 10:

 response = input('Enter a number: ')

 value = float(response)

print(value)

PRACTICE EXERCISE 6

Solution

Solution

Breaking a while-loop
Unlike for-loops, it is common to break out of a while-loop, mid-process. This is also known as premature termination.

To consider a situation that may necessitate such an approach, we shall modify our scenario as follows:

stop = 10

start = 0

step = 0.5

number = start

sequence = list()

while number < stop:

 sequence.append(number)

 number += step

print(sequence)

PYTHON

[0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5]

OUTPUT

A smarter solution, however, would be:

stop = 10

start = 0

step = 0.5

sequence = [start]

while sequence[-1] < stop - step:

 sequence.append(sequence[-1] + step)

print(sequence)

PYTHON

[0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5]

OUTPUT

We want to ask the user to enter a sequence of exactly �ve amino acids. If the sequence the user
provides is more or less than �ve letters long, we would like to display a message and ask them to try
again; otherwise, we will display the sequence and terminate the program. Additionally, the loop
should be terminated: - upon three failed attempts; or, - if the user enters the word exit instead of a
�ve-character sequence.

In the former case, however, we would also like to display a message and inform the user that we are terminating the programme
because of three failed attempts.

To implement the �rst addition to our code, we will have to make the following alterations in our code:

De�ne a variable to hold the iteration cycle, then test its value at the beginning of each cycle to ensure that it is below the
designated threshold. Otherwise, we manually terminate the loop using the break syntax.

Create a conjunctive conditional statement for the while-loop to make, so that it is also sensitive to our exit keyword.

sequence = str()

counter = 1

max_counter = 3

exit_keyword = 'exit'

while len(sequence) != 5 and sequence != exit_keyword:

 if counter == max_counter:

 sequence = "Three failed attempt - I'm done."

 break

 sequence = input('Enter a sequence of exactly 5 amino acids or [exit]: ')

 counter += 1

print(sequence)

Exercises

1. Can you explain the reason why, in the example given in subsection for-loop and conditional statements we set minimum
to be equal to the �rst value of our array instead of, for instance, zero or some other number?

Store your answer in a variable and display it using print() .

2. Write a script that using a for -loop, calculates the sum of all numbers in an array de�ned as follows:

numbers = [0, -2.1, 1.5, 3]

and display the result as:

Sum of the numbers in the array is 2.4

3. Given an array of integer values as:

numbers = [2, 1, 3]

write a script using for -loops, and display each number in the list as many times as the number itself. The program must
therefore display ‘2’ twice, ‘1’ once, and ‘3’ three times.

4. Given a list of numbers de�ned as:

numbers = [7, 16, 0.3, 0, 15, -4, 5, 3, 15]

write a script that using (at most) two for -loops, �nds the variance of the numbers, and display the mean, and the variance.
Note that you will need to calculate the mean as a part of your calculations to �nd the variance.

The equation for calculating variance is:

Hint: Breaking down the problem into smaller pieces will simplify the process of translating it into code and thereby solving it:

a. Work out the Mean or (the simple average of the numbers):

b. Calculate the sum of: each number () subtracted by the Mean () and square the result.

c. Divide the resulting number by the length of number.

Display the results in the following format:

END OF CHAPTER EXERCISES

=σ2 (− μ∑n
i=1 xi)2

n

μ

μ =
∑n

i=1 xi

n

xi μ

Mean: XXXX

Variance: XXXX

Solution

Iterations and loops are used to perform repetitive operations.

Implementation of for-loops involves four steps.

Conditional statements are used within loops to handle different situations.

while-loops are most suitable when an exact number of conditions/iterations is unknown.

KEY POINTS

