
Dictionaries
Last updated on 2024-08-24 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

This chapter assumes that you are familiar with the following concepts in Python:

Indentation Rule

Conditional Statements

Arrays

Loops and Iterations

Dictionary
Mapping Types – dict

Google search

StackOverflow python-3.x dictionaries

OVERVIEW

Questions

What is a dictionary, in Python?

What are the ways to interact with a dictionary?

Can a dictionary be nested?

Objectives

Understanding the structure of a dictionary.

Accessing data from a dictionary.

Applying nested dictionaries to deal with complex data.

PREREQUISITE

Basic Python

https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/06-dictionaries.Rmd
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/06-dictionaries.Rmd
http://127.0.0.1:5733/06-dictionaries.pdf
http://127.0.0.1:5733/06-dictionaries.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1
http://127.0.0.1:5733/03-conditional_statements.html#subsubsec:indentationRule
http://127.0.0.1:5733/03-conditional_statements.html
http://127.0.0.1:5733/04-arrays.html
http://127.0.0.1:5733/05-iterations.html
https://docs.python.org/3.6/library/stdtypes.html#mapping-types-dict
https://www.google.co.uk/search?q=Dictionaries%20in%20Python%203
https://stackoverflow.com/search?q=python-3.x%20dictionaries&s=78ef2a31-bb79-485b-914d-02db1ab8e9ca

YouTube Tutorial Dictionaries

Dictionaries are one of the most valuable in-build tools in Python, and are characterised by being able to associate a set of values with a number
of keys.

Think of a paperback dictionary, where we have a range of words together with their definitions. The words are the keys, and the definitions are
the values that are associated with those keys. A Python dictionary works in the same way.

Consider the following scenario:

Suppose we have a number of protein kinases, and we would like to associate them with their descriptions
for future reference.

This is an example of association in arrays. We may visualise this problem as displayed in Figure.

One way to associate the proteins with their definitions would be to make use of nested arrays, as covered in Basic Python 2. However, this
would make it difficult to retrieve the values at a later point in time. This is because in order to retrieve these values, we would need to know the
numerical index at which a given protein is stored, and the level it’s stored at.

As an alternative to using normal arrays in such cases, we can make use of associative arrays. The most common method for constructing an
associative array in Python is to create dictionaries or dict.

To implement a dict in Python, we place our entries within curly brackets, separated using a comma. We separate keys and values
using a colon — e.g. {‘key’: ‘value’}. The combination of dictionary key and its associated value is referred to as a dictionary item.

When constructing a long dict with several items that span over several lines, it is not necessary to write one item per line, nor to use
indentations for each item or line. All we need to do is to write key-value pairs as {‘key’: ‘value’} in curly brackets, and separate each pair
using a comma. However, it is good practice to write one item per line and use indentations as it makes it considerably easier to read
the code and understand the hierarchy.

We can therefore implement the diagram displayed in Figure in Python as follows:

REMEMBER

NOTE

https://www.youtube.com/results?search_query=Python+3+Programming+Tutorial+-+Dictionaries

Use the Universal Protein Resource (UniProt) database to find the following human proteins:

Axin-1

Rhodopsin

Construct a dictionary for these proteins and the number amino acids within each of them. The keys should represent the name of the
protein. Display the result.

Solution

protein_kinases = {

 'PKA': 'Involved in regulation of glycogen, sugar, and lipid metabolism.',

 'PKC': 'Regulates signal transduction pathways such as the Wnt pathway.',

 'CK1': 'Controls the function of other proteins through phosphorylation.'

 }

print(protein_kinases)

PYTHON

{'PKA': 'Involved in regulation of glycogen, sugar, and lipid metabolism.', 'PKC': 'Regulates signal transduc

OUTPUT

print(type(protein_kinases))

PYTHON

<class 'dict'>

OUTPUT

PRACTICE EXERCISE 1

proteins = {

 'Axin-1': 862,

 'Rhodopsin': 348

 }

print(proteins)

PYTHON

{'Axin-1': 862, 'Rhodopsin': 348}

OUTPUT

https://uniprot.org/

Now that we have created a dictionary; we can test whether or not a specific key exists our dictionary:

Using the dictionary you created in Practice Exercise 1, test to determine whether or not a protein called ERK exists as a key in your
dictionary. Display the result as a Boolean value.

Solution

Interacting with a dictionary
In programming, we have already learned that the more explicit our code is, the better it is. Interacting with dictionaries in Python is very easy,
coherent and explicit. This makes them a powerful tool that we can exploit for different purposes.

In arrays, specifically in list and tuple, we routinely use indexing techniques to retrieve values. In dictionaries, however, we use keys to do
that. Because we can define the keys of a dictionary ourselves, we no longer have to rely exclusively on numeric indices.

As a result, we can retrieve the values of a dictionary using their respective keys as follows:

'CK1' in protein_kinases

PYTHON

True

OUTPUT

'GSK3' in protein_kinases

PYTHON

False

OUTPUT

PRACTICE EXERCISE 2

print('ERK' in proteins)

PYTHON

False

OUTPUT

print(protein_kinases['CK1'])

PYTHON

However, if we attempt to retrieve the value for a key that does not exist in our dict, a KeyError will be raised:

Implement a dict to represent the following set of information:

Cystic Fibrosis:

Full Name Gene Type

Cystic fibrosis transmembrane conductance regulator CFTR Membrane
Protein

Using the dictionary you implemented, retrieve and display the gene associated with cystic fibrosis.

Controls the function of other proteins through phosphorylation.

OUTPUT

'GSK3' in protein_kinases

PYTHON

False

OUTPUT

print(protein_kinases['GSK3'])

PYTHON

KeyError: 'GSK3'

OUTPUT

PRACTICE EXERCISE 3

Solution

Whilst the values in a dict can be of virtually any type supported in Python, the keys may only be defined using immutable types.

To find out which types are immutable, see Table. Additionally, the keys in a dictionary must be unique.

If we attempt to construct a dict using a mutable value as key, a TypeError will be raised.

For instance, list is a mutable type and therefore cannot be used as a key:

But we can use any immutable type as a key:

cystic_fibrosis = {

 'full name': 'Cystic fibrosis transmembrane conductance regulator',

 'gene': 'CFTR',

 'type': 'Membrane Protein'

 }

print(cystic_fibrosis['gene'])

PYTHON

CFTR

OUTPUT

REMEMBER

test_dict = {

 ['a', 'b']: 'some value'

 }

PYTHON

TypeError: unhashable type: 'list'

OUTPUT

test_dict = {

 'ab': 'some value'

 }

print(test_dict)

PYTHON

http://127.0.0.1:5733/02-input_output.html#fig:nativeTypes

If we define a key more than once, the Python interpreter constructs the entry in dict using the last defined instance of that key.

In the following example, we repeat the key ‘pathway’ twice; and as expected, the interpreter only uses the last instance, which in this case
represents the value ‘Canonical’:

Mutability
Like lists, dictionaries are mutable. This means that we can alter the contents of a dictionary, after it has been instantiated. We can make any
alterations to a dictionary as long as we use immutable values for the keys.

Suppose we have a dictionary stored in a variable called protein, holding some information about a specific protein:

We can add new items to our dictionary or alter the existing ones:

{'ab': 'some value'}

OUTPUT

test_dict = {

 ('a', 'b'): 'some value'

 }

print(test_dict)

PYTHON

{('a', 'b'): 'some value'}

OUTPUT

signal = {

 'name': 'Wnt',

 'pathway': 'Non-Canonical', # first instance

 'pathway': 'Canonical' # second instance

 }

print(signal)

PYTHON

{'name': 'Wnt', 'pathway': 'Canonical'}

OUTPUT

protein = {

 'full name': 'Cystic fibrosis transmembrane conductance regulator',

 'alias': 'CFTR',

 'gene': 'CFTR',

 'type': 'Membrane Protein',

 'common mutations': ['Delta-F508', 'G542X', 'G551D', 'N1303K']

 }

PYTHON

We can also alter an existing value in a dictionary using its key. To do so, we simply access the value using its key, and treat it as a normal
variable; the same way we would treat members of a list:

Adding a new item:

protein['chromosome'] = 7

print(protein)

print(protein['chromosome'])

PYTHON

{'full name': 'Cystic fibrosis transmembrane conductance regulator', 'alias': 'CFTR', 'gene': 'CFTR', 'type'

7

OUTPUT

print(protein['common mutations'])

PYTHON

['Delta-F508', 'G542X', 'G551D', 'N1303K']

OUTPUT

protein['common mutations'].append('W1282X')

print(protein)

PYTHON

{'full name': 'Cystic fibrosis transmembrane conductance regulator', 'alias': 'CFTR', 'gene': 'CFTR', 'type'

OUTPUT

Implement the following dictionary:

signal = {'name': 'Wnt', 'pathway': 'Non-Canonical'}}

with respect to signal:

Correct the value of pathway to “Canonical”;

Add a new item to the dictionary to represent the receptors for the canonical pathway as “Frizzled” and “LRP”.

Display the altered dictionary as the final result.

Solution

Displaying an entire dictionary using the print() function can look a little messy because it is not properly structured. There is,
however, an external library called pprint (Pretty-Print) that behaves in very similar way to the default print() function, but
structures dictionaries and other arrays in a more presentable way before displaying them. We do not elaborate on Pretty-Print in this
course, but it is a part of Python’s default library, and is therefore installed with Python automatically. To learn more about it, have a
read through the official documentation for the library and review the examples.

Because a dictionary’s keys are immutable, they cannot be altered. However, we can get around this limitation in the following manner. It is
possible to introduce a new key and assigning the values of the old key to this new key. Once we have done this, we can go ahead and remove
the old item. The easiest way to remove an item from a dictionary is to use the syntax del :

PRACTICE EXERCISE 4

signal = {'name': 'Wnt', 'pathway': 'Non-Canonical'}

signal['pathway'] = 'Canonical'

signal['receptors'] = ('Frizzled', 'LRP')

print(signal)

PYTHON

{'name': 'Wnt', 'pathway': 'Canonical', 'receptors': ('Frizzled', 'LRP')}

OUTPUT

ADVANCED TOPIC

https://docs.python.org/3/library/pprint.html#module-pprint
https://docs.python.org/3/library/pprint.html#example

We can simplify the above operation using the .pop() method, which removes the specified key from a dictionary and returns any values
associated with it:

Creating a new key and assigning to it the

values of the old key:

protein['human chromosome'] = protein['chromosome']

print(protein)

PYTHON

{'full name': 'Cystic fibrosis transmembrane conductance regulator', 'alias': 'CFTR', 'gene': 'CFTR', 'type'

OUTPUT

Now we remove the old item from the dictionary:

del protein['chromosome']

print(protein)

PYTHON

{'full name': 'Cystic fibrosis transmembrane conductance regulator', 'alias': 'CFTR', 'gene': 'CFTR', 'type'

OUTPUT

protein['common mutations in caucasians'] = protein.pop('common mutations')

print(protein)

PYTHON

{'full name': 'Cystic fibrosis transmembrane conductance regulator', 'alias': 'CFTR', 'gene': 'CFTR', 'type'

OUTPUT

Implement a dictionary as:

with respect to signal:

Change the key name from ‘pdb’ to ‘pdb id’ using the .pop() method.

Write a code to find out whether the dictionary:

contains the new key (i.e. ‘pdb id’).

confirm that it no longer contains the old key (i.e. ‘pdb’)

If both conditions are met, display:

Contains the new key, but not the old one.

Otherwise:

Failed to alter the dictionary.

Solution

PRACTICE EXERCISE 5

signal = {'name': 'Beta-Galactosidase', 'pdb': '4V40'}

PYTHON

signal = {

 'name': 'Beta-Galactosidase',

 'pdb': '4V40'

}

signal['pdb id'] = signal.pop('pdb')

if 'pdb id' in signal and 'pdb' not in signal:

 print('Contains the new key, but not the old one.')

else:

 print('Failed to alter the dictionary.')

PYTHON

Contains the new key, but not the old one.

OUTPUT

Nested dictionaries
As explained earlier the section, dictionaries are among the most powerful built-in tools in Python. As we have previously done with arrays, it is
also possible to construct nested dictionaries in order to organise data in a hierarchical fashion. This useful technique is outlined extensively in
example.

It is very easy to implement nested dictionaries:

and we follow similar principles to access, alter or remove the values stored in nested dictionaries:

Parent dictionary

pkc_family = {

 # Child dictionary A:

 'conventional': {

 'note': 'Require DAG, Ca2+, and phospholipid for activation.',

 'types': ['alpha', 'beta-1', 'beta-2', 'gamma']

 },

 # Child dictionary B:

 'atypical': {

 'note': (

 'Require neither Ca2+ nor DAG for'

 'activation (require phosphatidyl serine).'

),

 'types': ['iota', 'zeta']

 }

}

PYTHON

print(pkc_family)

PYTHON

{'conventional': {'note': 'Require DAG, Ca2+, and phospholipid for activation.', 'types': ['alpha', 'beta-1'

OUTPUT

print(pkc_family['atypical'])

PYTHON

{'note': 'Require neither Ca2+ nor DAG foractivation (require phosphatidyl serine).', 'types': ['iota', 'zeta

OUTPUT

print(pkc_family['conventional']['note'])

PYTHON

Require DAG, Ca2+, and phospholipid for activation.

OUTPUT

Implement the following table of genetic disorders as a nested dictionary:

Full Name Gene Type

Cystic fibrosis Cystic fibrosis
transmembrane

conductance
regulator

CFTR Membrane
Protein

Xeroderma pigmentosum A DNA repair
protein

complementing
XP-A cells

XPA Nucleotide
excision
repair

Haemophilia A Haemophilia A F8 Factor VIII
Blood-
clotting
protein

Using the dictionary, display the gene for Haemophilia A.

print(pkc_family['conventional']['types'])

PYTHON

['alpha', 'beta-1', 'beta-2', 'gamma']

OUTPUT

print(pkc_family['conventional']['types'][2])

PYTHON

beta-2

OUTPUT

apkc_types = pkc_family['conventional']['types']

print(apkc_types[1])

PYTHON

beta-1

OUTPUT

PRACTICE EXERCISE 6

Solution

genetic_diseases = {

 'Cystic fibrosis': {

 'name': 'Cystic fibrosis transmembrane conductance regulator',

 'gene': 'CFTR',

 'type': 'Membrane Protein'

 },

 'Xeroderma pigmentosum A': {

 'name': 'DNA repair protein complementing XP-A cells',

 'gene': 'XPA',

 'type': 'Nucleotide excision repair'

 },

 'Haemophilia A': {

 'name': 'Haemophilia A',

 'gene': 'F8',

 'type': 'Factor VIII Blood-clotting protein'

 }

}

print(genetic_diseases['Haemophilia A']['gene'])

PYTHON

F8

OUTPUT

We would like to store and analyse the structure of several proteins involved in the Lac operon - a commonly-studied operon
fundamental to the metabolism and transport of lactose in many species of enteric bacteria. To do so, let’s create a Python dict to help
us organise our data.

Let’s begin by creating an empty dictionary to store our structures:

We then move on to depositing our individual entries to structures by adding new items to it.

Each item has a key that represents the name of the protein we are depositing, and a value that is itself a dictionary consisting of
information regarding the structure of that protein:

Dictionaries don’t have to be homogeneous. In other words, each entry can contain different items within it.

For instance, the ‘LacY’ protein contains an additional key entitled ‘note’:

EXAMPLE: NESTED DICTIONARIES IN PRACTICE

structures = dict()

PYTHON

structures['Beta-Galactosidase'] = {

 'pdb id': '4V40',

 'deposit date': '1994-07-18',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 2.5,

 'authors': (

 'Jacobson, R.H.', 'Zhang, X.',

 'Dubose, R.F.', 'Matthews, B.W.'

)

}

PYTHON

structures['Lactose Permease'] = {

 'pdb id': '1PV6',

 'deposit data': '2003-06-23',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 3.5,

 'authors': (

 'Abramson, J.', 'Smirnova, I.', 'Kasho, V.',

 'Verner, G.', 'Kaback, H.R.', 'Iwata, S.'

)

}

PYTHON

The variable structure which is an instance of type dict, is now a nested dictionary:

We know that we can extract information from our nested dict just like we would with any other dict:

structures['LacY'] = {

 'pdb id': '2Y5Y',

 'deposit data': '2011-01-19',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 3.38,

 'note': 'in complex with an affinity inactivator',

 'authors': (

 'Chaptal, V.', 'Kwon, S.', 'Sawaya, M.R.',

 'Guan, L.', 'Kaback, H.R.', 'Abramson, J.'

)

}

PYTHON

print(structures)

PYTHON

{'Beta-Galactosidase': {'pdb id': '4V40', 'deposit date': '1994-07-18', 'organism': 'Escherichia coli', '

OUTPUT

print(structures['Beta-Galactosidase'])

PYTHON

{'pdb id': '4V40', 'deposit date': '1994-07-18', 'organism': 'Escherichia coli', 'method': 'x-ray', 'reso

OUTPUT

print(structures['Beta-Galactosidase']['method'])

PYTHON

x-ray

OUTPUT

print(structures['Beta-Galactosidase']['authors'])

PYTHON

Sometimes, particularly when creating longer dictionaries, it might be easier to store individual entries in a variable beforehand and add
them to the parent dictionary later on.

Note that our parent dictionary in this case is represented by the variable structure.

We can then use the .update() method to update our structures dictionary:

Sometimes, we need to see what keys our dictionary contains. In order to obtain an array of keys, we use the method .keys() as
follows:

('Jacobson, R.H.', 'Zhang, X.', 'Dubose, R.F.', 'Matthews, B.W.')

OUTPUT

print(structures['Beta-Galactosidase']['authors'][0])

PYTHON

Jacobson, R.H.

OUTPUT

entry = {

 'Lac Repressor': {

 'pdb id': '1LBI',

 'deposit data': '1996-02-17',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 2.7,

 'authors': (

 'Lewis, M.', 'Chang, G.', 'Horton, N.C.',

 'Kercher, M.A.', 'Pace, H.C.', 'Lu, P.'

)

 }

}

PYTHON

structures.update(entry)

print(structures['Lac Repressor'])

PYTHON

{'pdb id': '1LBI', 'deposit data': '1996-02-17', 'organism': 'Escherichia coli', 'method': 'x-ray', 'reso

OUTPUT

print(structures.keys())

PYTHON

Likewise, we can also obtain an array of values in a dictionary using the .values() method:

We can then extract specific information to conduct an analysis. Note that the len() function in this context returns the number of
keys in the parent dictionary only.

Useful methods for dictionary
Next, we can demonstrate some of the useful methods that are associated with dict in Python.

Given a dictionary as:

dict_keys(['Beta-Galactosidase', 'Lactose Permease', 'LacY', 'Lac Repressor'])

OUTPUT

print(structures['LacY'].values())

PYTHON

dict_values(['2Y5Y', '2011-01-19', 'Escherichia coli', 'x-ray', 3.38, 'in complex with an affinity inacti

OUTPUT

sum_resolutions = 0

res = 'resolution'

sum_resolutions += structures['Beta-Galactosidase'][res]

sum_resolutions += structures['Lactose Permease'][res]

sum_resolutions += structures['Lac Repressor'][res]

sum_resolutions += structures['LacY'][res]

total_entries = len(structures)

average_resolution = sum_resolutions / total_entries

print(average_resolution)

PYTHON

3.0199999999999996

OUTPUT

lac_repressor = {

 'pdb id': '1LBI',

 'deposit data': '1996-02-17',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 2.7,

}

PYTHON

We can create an array of all items in the dictionary using the .items() method:

Similar to the enumerate() function, the .items() method also returns an array of tuple members. Each tuple itself consists of two
members, and is structured as (‘key’: ‘value’). On that account, we can use its output in the context of a for–loop as follows:

Try .items() on a nested dict, and see how it works.

print(lac_repressor.items())

PYTHON

dict_items([('pdb id', '1LBI'), ('deposit data', '1996-02-17'), ('organism', 'Escherichia coli'), ('method',

OUTPUT

for key, value in lac_repressor.items():

 print(key, value, sep=': ')

PYTHON

pdb id: 1LBI

deposit data: 1996-02-17

organism: Escherichia coli

method: x-ray

resolution: 2.7

OUTPUT

PRACTICE EXERCISE 7

Solution

We learned earlier that if we try to retrieve a key that is not in the dict, a KeyError will be raised. If we anticipate this, we can handle it using
the .get() method. The method takes in the key and searches the dictionary to find it. If found, the associated value is returned. Otherwise, the
method returns None by default. We can also pass a second value to .get() to replace None in cases that the requested key does not exist:

nested_dict = {

 'L1-a': {

 'L2-Ka': 'L2_Va',

 'L2-Kb': 'L2_Vb',

 },

 'L1-b': {

 'L2-Kc': 'L2_Vc',

 'L2-Kd': 'L3_Vd'

 },

 'L3-c': 'L3_V'

}

print(nested_dict.items())

PYTHON

dict_items([('L1-a', {'L2-Ka': 'L2_Va', 'L2-Kb': 'L2_Vb'}), ('L1-b', {'L2-Kc': 'L2_Vc', 'L2-Kd': 'L3_Vd'}

OUTPUT

print(lac_repressor['gene'])

PYTHON

KeyError: 'gene'

OUTPUT

print(lac_repressor.get('gene'))

PYTHON

None

OUTPUT

print(lac_repressor.get('gene', 'Not found...'))

PYTHON

Implement the lac_repressor dictionary and try to extract the values associated with the following keys:

organism

authors

subunits

method

If a key does not exist in the dictionary, display No entry instead.

Display the results in the following format:

organism: XXX

authors: XXX

Solution

Not found...

OUTPUT

PRACTICE EXERCISE 8

lac_repressor = {

 'pdb id': '1LBI',

 'deposit data': '1996-02-17',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 2.7,

}

requested_keys = ['organism', 'authors', 'subunits', 'method']

for key in requested_keys:

 lac_repressor.get(key, 'No entry')

PYTHON

'Escherichia coli'

'No entry'

'No entry'

'x-ray'

OUTPUT

for-loop and dictionary
Dictionaries and for-loops used together can synergise into a powerful combination. We can leverage the accessibility of dictionary values
through specific keys that we define ourselves in a loop in order to extract data iteratively, and repeatedly.

One of the most useful tools that we can create using nothing more than a for-loop and a dictionary, in only a few lines of code, is a sequence
converter.

Here, we are essentially iterating through a sequence of DNA nucleotides (sequence), extracting one character per loop cycle from our string
(nucleotide). We then use that character as a key to retrieve its corresponding value from our dictionary (dna2rna). Once we get the value, we
add it to the variable that we initialised using an empty string outside the scope of our for-loop (rna_sequence) as discussed here. At the end of
the process, the variable rna_sequence will contain a converted version of our sequence.

sequence = 'CCCATCTTAAGACTTCACAAGACTTGTGAAATCAGACCACTGCTCAATGCGGAACGCCCG'

dna2rna = {"A": "U", "T": "A", "C": "G", "G": "C"}

rna_sequence = str() # Creating an empty string.

for nucleotide in sequence:

 rna_sequence += dna2rna[nucleotide]

print('DNA:', sequence)

print('RNA:', rna_sequence)

PYTHON

DNA: CCCATCTTAAGACTTCACAAGACTTGTGAAATCAGACCACTGCTCAATGCGGAACGCCCG

RNA: GGGUAGAAUUCUGAAGUGUUCUGAACACUUUAGUCUGGUGACGAGUUACGCCUUGCGGGC

OUTPUT

We know that in reverse transcription, RNA nucleotides are converted to their complementary DNA nucleotides as shown:

Type Direction Nucleotides

RNA 5’…’ U A G C

cDNA 5’…’ A T C G

with this in mind:

1. Use the table to construct a dictionary for reverse transcription, and another dictionary for the conversion of cDNA to DNA.

2. Using the appropriate dictionary, convert the following mRNA (exon) sequence for human G protein-coupled receptor to its cDNA.

PRACTICE EXERCISE 9

human_gpcr = (

 'AUGGAUGUGACUUCCCAAGCCCGGGGCGUGGGCCUGGAGAUGUACCCAGGCACCGCGCAGCCUGCGGCCCCCAACACCACCUC'

 'CCCCGAGCUCAACCUGUCCCACCCGCUCCUGGGCACCGCCCUGGCCAAUGGGACAGGUGAGCUCUCGGAGCACCAGCAGUACG'

 'UGAUCGGCCUGUUCCUCUCGUGCCUCUACACCAUCUUCCUCUUCCCCAUCGGCUUUGUGGGCAACAUCCUGAUCCUGGUGGUG'

 'AACAUCAGCUUCCGCGAGAAGAUGACCAUCCCCGACCUGUACUUCAUCAACCUGGCGGUGGCGGACCUCAUCCUGGUGGCCGA'

 'CUCCCUCAUUGAGGUGUUCAACCUGCACGAGCGGUACUACGACAUCGCCGUCCUGUGCACCUUCAUGUCGCUCUUCCUGCAGG'

 'UCAACAUGUACAGCAGCGUCUUCUUCCUCACCUGGAUGAGCUUCGACCGCUACAUCGCCCUGGCCAGGGCCAUGCGCUGCAGC'

 'CUGUUCCGCACCAAGCACCACGCCCGGCUGAGCUGUGGCCUCAUCUGGAUGGCAUCCGUGUCAGCCACGCUGGUGCCCUUCAC'

 'CGCCGUGCACCUGCAGCACACCGACGAGGCCUGCUUCUGUUUCGCGGAUGUCCGGGAGGUGCAGUGGCUCGAGGUCACGCUGG'

 'GCUUCAUCGUGCCCUUCGCCAUCAUCGGCCUGUGCUACUCCCUCAUUGUCCGGGUGCUGGUCAGGGCGCACCGGCACCGUGGG'

 'CUGCGGCCCCGGCGGCAGAAGGCGCUCCGCAUGAUCCUCGCGGUGGUGCUGGUCUUCUUCGUCUGCUGGCUGCCGGAGAACGU'

 'CUUCAUCAGCGUGCACCUCCUGCAGCGGACGCAGCCUGGGGCCGCUCCCUGCAAGCAGUCUUUCCGCCAUGCCCACCCCCUCA'

 'CGGGCCACAUUGUCAACCUCACCGCCUUCUCCAACAGCUGCCUAAACCCCCUCAUCUACAGCUUUCUCGGGGAGACCUUCAGG'

 'GACAAGCUGAGGCUGUACAUUGAGCAGAAAACAAAUUUGCCGGCCCUGAACCGCUUCUGUCACGCUGCCCUGAAGGCCGUCAU'

 'UCCAGACAGCACCGAGCAGUCGGAUGUGAGGUUCAGCAGUGCCGUG'

)

PYTHON

Solution

Q2

Summary
In this section we explored dictionaries: one of the most powerful in-built types in Python. We covered:

How to create dictionaries in Python.
Methods to alter or manipulate both normal and nested dictionaries.
Two different techniques for changing an existing key.
Examples of how dictionaries can organise data and retrieve specific items and entries as and when required.

Finally, we also explored instantiating iterables (discussed here) from dictionary keys or values using the .key() , the .values() , and/or
.items() methods.

Exercises

mrna2cdna = {

 'U': 'A',

 'A': 'T',

 'G': 'C',

 'C': 'G'

}

cdna2dna = {

 'A': 'T',

 'T': 'A',

 'C': 'G',

 'G': 'C'

}

PYTHON

cdna = str()

for nucleotide in human_gpcr:

 cdna += mrna2cdna[nucleotide]

print(cdna)

PYTHON

TACCTACACTGAAGGGTTCGGGCCCCGCACCCGGACCTCTACATGGGTCCGTGGCGCGTCGGACGCCGGGGGTTGTGGTGGAGGGGGCTCGAGTTGGACAGGGTG

OUTPUT

We know that the process of protein translation begins by transcribing a gene from DNA to RNA nucleotides, followed by translating
the RNA codons into protein.

Conventionally, we write DNA sequences from their 5’-end to their 3’-end. The transcription process, however, begins from the 3’-end of
a gene, through to the 5’-end (anti-sense strand), resulting in a sense mRNA sequence complementing the sense DNA strand. This is
because RNA polymerase can only add nucleotides to the 3’-end of the growing mRNA chain, which eliminates the need for the
Okazaki fragments as seen in DNA replication.

Example: The DNA sequence ATGTCTAAA is transcribed into AUGUCUAAA.

Given a conversion table:

and this 5’- to 3’-end DNA sequence of 717 nucleotides for the Green Fluorescent Protein (GFP) mutant 3 extracted from Aequorea
victoria:

Use the DNA sequence and the conversion table to:

1. Write a Python script to transcribe this sequence to mRNA as it occurs in a biological organism. That is, determine the
complimentary DNA first, and use this to produce the mRNA sequence.

2. Use the following dictionary in a Python script to obtain the translation (protein sequence) of the Green Fluorescent Protein using
the mRNA sequence you obtained.

END OF CHAPTER EXERCISES

dna_sequence = (

 'ATGTCTAAAGGTGAAGAATTATTCACTGGTGTTGTCCCAATTTTGGTTGAATTAGATGGTGATGTTAATGGT'

 'CACAAATTTTCTGTCTCCGGTGAAGGTGAAGGTGATGCTACTTACGGTAAATTGACCTTAAAATTTATTTGT'

 'ACTACTGGTAAATTGCCAGTTCCATGGCCAACCTTAGTCACTACTTTCGGTTATGGTGTTCAATGTTTTGCT'

 'AGATACCCAGATCATATGAAACAACATGACTTTTTCAAGTCTGCCATGCCAGAAGGTTATGTTCAAGAAAGA'

 'ACTATTTTTTTCAAAGATGACGGTAACTACAAGACCAGAGCTGAAGTCAAGTTTGAAGGTGATACCTTAGTT'

 'AATAGAATCGAATTAAAAGGTATTGATTTTAAAGAAGATGGTAACATTTTAGGTCACAAATTGGAATACAAC'

 'TATAACTCTCACAATGTTTACATCATGGCTGACAAACAAAAGAATGGTATCAAAGTTAACTTCAAAATTAGA'

 'CACAACATTGAAGATGGTTCTGTTCAATTAGCTGACCATTATCAACAAAATACTCCAATTGGTGATGGTCCA'

 'GTCTTGTTACCAGACAACCATTACTTATCCACTCAATCTGCCTTATCCAAAGATCCAAACGAAAAGAGAGAC'

 'CACATGGTCTTGTTAGAATTTGTTACTGCTGCTGGTATTACCCATGGTATGGATGAATTGTACAAATAA'

)

PYTHON

https://en.wikipedia.org/wiki/Okazaki_fragments
https://en.wikipedia.org/wiki/Green_fluorescent_protein
https://en.wikipedia.org/wiki/Aequorea_victoria
https://en.wikipedia.org/wiki/Aequorea_victoria

Solution

Dictionaries associate a set of values with a number of keys.

Keys are used to access the values of a dictionary.

Dictionaries are mutable.

Nested dictionaries are constructed to organise data in a hierarchical fashion.

Some of the useful methods to work with dictionaries are: .items() , .get()

codon2aa = {

 "UUU": "F", "UUC": "F", "UUA": "L", "UUG": "L", "CUU": "L",

 "CUC": "L", "CUA": "L", "CUG": "L", "AUU": "I", "AUC": "I",

 "AUA": "I", "GUU": "V", "GUC": "V", "GUA": "V", "GUG": "V",

 "UCU": "S", "UCC": "S", "UCA": "S", "UCG": "S", "AGU": "S",

 "AGC": "S", "CCU": "P", "CCC": "P", "CCA": "P", "CCG": "P",

 "ACU": "T", "ACC": "T", "ACA": "T", "ACG": "T", "GCU": "A",

 "GCC": "A", "GCA": "A", "GCG": "A", "UAU": "Y", "UAC": "Y",

 "CAU": "H", "CAC": "H", "CAA": "Q", "CAG": "Q", "AAU": "N",

 "AAC": "N", "AAA": "K", "AAG": "K", "GAU": "D", "GAC": "D",

 "GAA": "E", "GAG": "E", "UGU": "C", "UGC": "C", "UGG": "W",

 "CGU": "R", "CGC": "R", "CGA": "R", "CGG": "R", "AGA": "R",

 "AGG": "R", "GGU": "G", "GGC": "G", "GGA": "G", "GGG": "G",

 "AUG": "<Met>", "UAA": "<STOP>", "UAG": "<STOP>", "UGA": "<STOP>"

}

PYTHON

KEY POINTS

