
Functions
Last updated on 2024-08-24 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

OVERVIEW

Questions

What are functions?

How are functions created?

What are optional arguments?

What makes functions so powerful?

Objectives

Understand how to develop and utilise functions.

Understanding different ways of creating functions.

Explaining input arguments.

Understanding the interconnectivity of functions.

Basic Python

https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/07-functions.Rmd
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/07-functions.Rmd
http://127.0.0.1:7859/07-functions.pdf
http://127.0.0.1:7859/07-functions.ipynb

Function to create a dictionaryFunction to create a dictionary

Transcription FunctionTranscription Function

https://www.youtube.com/watch?v=hcvGRK8FvQ8
https://www.youtube.com/watch?v=_Y6ucZYbVL4

Covariance FunctionCovariance Function

This chapter assumes that you are familiar with the following concepts in Python:

Mathematical Operation

Indentation Rule

Conditional Statements

Arrays

Loops and Iterations

Functions

Defining Functions

PREREQUISITE

https://www.youtube.com/watch?v=on_v5Ge80iE
http://127.0.0.1:7859/02-input_output.html#math_ops
http://127.0.0.1:7859/03-conditional_statements.html#subsubsec:indentationRule
http://127.0.0.1:7859/03-conditional_statements.html
http://127.0.0.1:7859/04-arrays.html
http://127.0.0.1:7859/05-iterations.html
https://docs.python.org/3/tutorial/controlflow.html#defining-functions

In programming, functions are individual units or blocks of code that incorporate and perform
specific tasks in a sequence defined and written by the programmer. As we learned in the first
chapter (on outputs), a function usually takes in one or several variables or values, processes them,
and produces a specific result. The variable(s) given to a function and those produced by it are
referred to as input arguments, and outputs respectively.

There are different ways to create functions in Python. In the L2D, we will be using def to
implement our functions. This is the simplest and most common method for declaring a function. The
structure of a typical function defined using def is as follows:

http://127.0.0.1:7859/02-input_output.html#sub:ProducingAnOutput

There are several points to remember relative to functions:

The name of a function follows same principles as that of any other variable as
discussed in variable names. The name must be in lower-case characters.

The input arguments of a function — e.g. value_a and value_b in the above example;
are essentially variables whose scope is the function. That is, they are only accessible
within the function itself, and not from anywhere else in the code.

Variables defined within a function, should never use the same name as variables
defined outside of it; or they may override each other.

A function declared using def should always be terminated with a return syntax.
Any values or variables that follow return are regarded as the function’s output.

If we do not specify a return value, or fail to terminate a function using return
altogether, the Python interpreter will automatically terminate that function with an
implicit return None. Being an implicit process, this is generally regarded as a bad
practice and should be avoided.

We implement functions to avoid repetition in our code. It is important that a function is only
performing a very specific task, so that it can be context-independent. You should therefore avoid
incorporating separable tasks inside a single function.

Functions are designed to perform specific tasks. That is why in the majority of cases, they
are named using verbs — e.g. add() or print() . Verbs describe an action, a state, or an
occurrence in the English language. Likewise, this type of nomenclature describes the action
performed by a specific function. As we encourage with variable naming: sensible, short
and descriptive names are best to consider, when naming a function.

REMEMBER

INTERESTING FACT

http://127.0.0.1:7859/02-input_output.html#subsec:variableNames

Once you start creating functions for different purposes, you will eventually amass a library of
ready-to-use functions which can individually address different needs. This is the primary principle
of a popular programming paradigm known as functional programming.

So let us implement the example outline in the diagram:

Once implemented, we can call and use the function we created. We can do so in the same way as
we do with the built-in functions such as max() or print() :

def add(value_a, value_b):

 """

 Calculates the sum of two numeric values

 given as inputs.

 :param value_a: First value.

 :type value_a: int, float

 :param value_b: Second value.

 :type value_b: int, float

 :return: Sum of the two values.

 :rtype: int, float

 """

 result = value_a + value_b

 return result

PYTHON

res = add(2, 5)

print(res)

PYTHON

7

OUTPUT

https://en.wikipedia.org/wiki/Functional_programming

When calling a function, we should always pass our positional input arguments in the order
they are defined in the function definition: i.e. from left to right.

This is because in the case of positional arguments, as the name suggests, the Python
interpreter relies on the position of each value to identify its variable name in the function
signature. The function signature for our add function is as follows:

add(value_a, value_b)

So in the above example where we say add(2, 5), the value 2 is identified as the input
argument for value_a, and not value_b. This happens automatically because in our function
call, the value 2 is written in the first position: the position at which value_a is defined in our
function declaration (signature).

Alternatively, we can use the name of each input argument to pass values onto them in any order.
When we use the name of the input argument explicitly, we pass the values as keyword arguments.
This is particularly useful in more complex functions where there are several input arguments.

Let us now use keyword arguments to pass values to our add() function:

REMEMBER

res = add(value_a=2, value_b=5)

print(res)

PYTHON

7

OUTPUT

Now, even if we change the order of our arguments, the function would still be able to associate the
values to the correct keyword argument:

res = add(value_b=2, value_a=5)

print(res)

PYTHON

7

OUTPUT

Choose the order of your input argument wisely. This is important when your function can
accept multiple input arguments.

Suppose we want to define a ‘division’ function. It makes sense to assume that the first
number passed to the function will be divided by the second number:

It is also much less likely for someone to use keywords to pass arguments to this function –
that is, to say:

than it is for them to use positional arguments (without any keywords), that is:

But if we use an arbitrary order, then we risk running into problems:

In which case, our function would perform perfectly well if we use keyword arguments;
however, if we rely on positional arguments and common sense, then the result of the
division would be calculated incorrectly.

REMEMBER

def divide(a, b):

 return a / b

PYTHON

result = divide(a=2, b=4)

PYTHON

result = divide(2, 4)

PYTHON

def divide_bad(denominator, numerator):

 return numerator / denominator

PYTHON

Implement a function called find_tata that takes in one str argument called seq and looks
for the TATA-box motif inside that sequence. Then:

if found, the function should return the index for the TATA-box as output.

if not found, the function should explicitly return None.

Example:

The function should behave, as follows:

sequence = 'GCAGTGTATAGTC'

res = find_tata(sequence)

result_a = divide_bad(numerator=2, denominator=4)

result_b = divide_bad(2, 4)

print(result_a == result_b)

PYTHON

False

OUTPUT

PRACTICE EXERCISE 1

Solution

Documentation
It is essential to write short, informative documentation for a functions that you are defining. There
is no single correct way to document a code. However, as a general rule, a sufficiently informative
documentation should tell us:

what a function does;

the names of the input arguments, and what type each argument should be;

the output, and its type.

This documentation string is referred to as the docstring. It is always written inside triple quotation
marks. The docstring must be implemented on the very first line, immediately following the
declaration of the function, in order for it to be recognised as documentation:

def find_tata(seq):

 tata_box = 'TATA'

 result = seq.find(tata_box)

 return result

PYTHON

You might feel as though you would remember what your own functions do. Assuming this
is often naive, however, as it is easy to forget the specifics of a function that you have
written; particularly if it is complex and accepts multiple arguments. Functions that we
implement tend to perform specialist, and often complex, interconnected processes. Whilst
you might remember what a specific function does for a few days after writing it, you will
likely have trouble remembering the details in a matter of months. And that is not even
considering details regarding the type of the input argument(s) and those of the output. In
addition, programmers often share their work with other fellow programmers; be it within
their team or in the wider context of a publication, or even for distribution via public
repositories, as a community contribution. Whatever the reason, there is one golden rule: a
function should not exist unless it is documented.

Writing the docstring on the first line is important. Once a function is documented, we can use
help() , which is a built-in function in Python, to access the documentations as follows:

def add(value_a, value_b):

 """

 Calculates the sum of two numeric values

 given as inputs.

 :param value_a: First value.

 :type value_a: int, float

 :param value_b: Second value.

 :type value_b: int, float

 :return: Sum of the two values.

 :rtype: int, float

 """

 result = value_a + value_b

 return result

PYTHON

REMEMBER

For very simple functions – like the add() function that we implemented above, it is sufficient to
simplify the docstring into something straightforward, and concise. This is because it is fairly
obvious what are the input and output arguments are, and what their respective types are/should
be. For example:

help(add)

PYTHON

Help on function add in module __main__:

add(value_a, value_b)

 Calculates the sum of two numeric values

 given as inputs.

 :param value_a: First value.

 :type value_a: int, float

 :param value_b: Second value.

 :type value_b: int, float

 :return: Sum of the two values.

 :rtype: int, float

OUTPUT

def add(value_a, value_b):

 """value_a + value_b -> number"""

 result = value_a + value_b

 return result

PYTHON

help(add)

PYTHON

Re-implement the function you defined in the previous Practice Exercise 1 with appropriate
documentation.

Solution

Help on function add in module __main__:

add(value_a, value_b)

 value_a + value_b -> number

OUTPUT

PRACTICE EXERCISE 2

def find_tata(seq):

 """

 Finds the location of the TATA-box,

 if one exists, in a polynucleotide

 sequence.

 :param seq: Polynucleotide sequence.

 :type seq: str

 :return: Start of the TATA-box.

 :rtype: int

 """

 tata_box = 'TATA'

 result = seq.find(tata_box)

 return result

PYTHON

Optional arguments
We already know that most functions accept one or more input arguments. Sometimes a function
does not need all of the arguments in order to perform a specific task.

Such an example that we have already worked with is print() . We already know that this
function may be utilised to display text on the screen. However, we also know that if we use the
file argument, it will behave differently in that it will write the text inside a file instead of
displaying it on the screen. Additionally, print() has other arguments such as sep or end, which
have specific default values of ’ ’ (a single space) and \n (a linebreak) respectively.

Input arguments that are necessary to call a specific function are referred to as non-default
arguments. Those whose definition is not mandatory for a function to be called are known
as default or optional arguments.

Optional arguments may only be defined after non-default arguments (if any). If this order
is not respected, a SyntaxError will be raised.

The default value defined for optional arguments can theoretically be an instance of any
type in Python. However, it is better and safer to only use immutable types (as
demonstrated in Table) for default values. The rationale behind this principle is beyond the
scope of this course, but you can read more about it in the official documentation.

In order to define functions with optional arguments, we need to assign a default value to them.
Remember: input arguments are variables with a specific scope. As a result, we can treat our input
argument as variables and assign them a value:

REMEMBER

ADVANCED TOPIC

http://127.0.0.1:7859/02-input_output.html#tb:types:nativeTypes
https://docs.python.org/3/tutorial/controlflow.html#default-argument-values

Now if we don’t explicitly define upper when calling prepare_seq() , its value is automatically
considered to be False:

def prepare_seq(seq, name, upper=False):

 """

 Prepares a sequence to be displayed.

 :param seq: Sequence

 :type seq: str

 :param name: Name of the sequence.

 :type name: str

 :param upper: Convert sequence to uppercase characters (default: False)

 :type upper: bool

 :return: Formatted string containing the sequence.

 :rtype: str

 """

 template = 'The sequence of {} is: {}'

 if not upper:

 response = template.format(name, seq)

 else:

 seq_upper = seq.upper()

 response = template.format(name, seq_upper)

 return response

PYTHON

sequence = 'TagCtGC'

prepped = prepare_seq(sequence, 'DNA')

print(prepped)

PYTHON

The sequence of DNA is: TagCtGC

OUTPUT

If we change the default value of False for upper and set to True, our sequence should be
converted to upper case characters:

Modify the function from the previous Practice Exercise 2 to accept an optional argument
called upper, with a default value of False. Thereafter:

if upper is False, then the function should perform as it already does (similar to the
previous Practice Exercise 2);

if upper is True, then the function should convert the sequence to contain only
uppercase characters, before it looks for the TATA-box.

Do not forget to update the docstring of your function.

prepped = prepare_seq(sequence, 'DNA', upper=True)

print(prepped)

PYTHON

The sequence of DNA is: TAGCTGC

OUTPUT

PRACTICE EXERCISE 3

Solution

It is not necessary to implement your functions in this way. It is, however, a common
practice among programmers in any programming language. For this reason, you should be
at least be familiar with the technique, as you will likely encounter it at some point.

def find_tata(seq, upper=False):

 """

 Finds the location of the TATA-box,

 if one exists, in a polynucleotide

 sequence.

 :param seq: Polynucleotide sequence.

 :type seq: str

 :param upper: Whether or not to

 homogenise the sequence

 to upper-case characters.

 :type upper: bool

 :return: Start of the TATA-box.

 :rtype: int

 """

 tata_box = 'TATA'

 if not upper:

 result = seq.find(tata_box)

 else:

 seq_prepped = seq.upper()

 result = seq_prepped.find(tata_box)

 return result

PYTHON

REMEMBER

It is important to note that it is also possible to have more than one return in a function. This is
useful when we need to account for different outcomes; such as the one we saw in the previous
example with prepare_seq() .

This means that we can simplify the process as follows:

Notice that we got rid of response. Here is a description of what is happening:

In this context, if the conditional statement holds — i.e. when upper is False— we enter the
if block. In this case, we reach the first return statement. It is at this point, that function

returns the corresponding results, and immediately terminates.

Conversely, if the conditional statement does not hold — i.e. where upper is True — we skip
the if block altogether and proceed. It is only then that we arrive at the second return
statement where the alternative set of results are prepared.

This does not alter the functionality of the function, in any way. However, in complex functions
which can be called repetitively (e.g. inside for loop), this technique may improve the performance
of the function.

def prepare_seq(seq, name, upper=False):

 """

 Prepares a sequence to be displayed.

 :param seq: Sequence

 :type seq: str

 :param name: Name of the sequence.

 :type name: str

 :param upper: Convert sequence to uppercase characters (default: False)

 :type upper: bool

 :return: Formated string containing the sequence.

 :rtype: str

 """

 template = 'The sequence of {} is: {}'

 if not upper:

 return template.format(name, seq)

 seq_upper = seq.upper()

 return template.format(name, seq_upper)

PYTHON

Now if we call our function, it will behave in exactly the same way as it did before:

Interconnectivity of functions
Functions can also call other functions. This is what makes them extremely powerful tools that may
be utilised to address an unlimited number of problems.

This allows us to devise a network of functions that can all call each other to perform different tasks
at different times. This network of functions can then collectively contribute to the production of a
single, final answer.

sequence = 'TagCtGC'

prepped = prepare_seq(sequence, 'DNA')

print(prepped)

PYTHON

The sequence of DNA is: TagCtGC

OUTPUT

prepped = prepare_seq(sequence, 'DNA', upper=True)

print(prepped)

PYTHON

The sequence of DNA is: TAGCTGC

OUTPUT

Functions should have specialist functionalities.They should ideally be written to perform
one task, and one task only.

So in instances where more operations are required, it is advised not to write more code to
execute these, into one function. This would defy the ethos of functional programming.
Instead, consider writing more functions that contain less code, and perform more specialist
functionalities.

REMEMBER

Now that we have function to calculate the mean, we can go ahead and write a function to
calculate the variance; which itself relies on mean:

EXAMPLE: A MINI TOOLBOX FOR STATISTICS

def mean(arr):

 """

 Calculates the mean of an array.

 :param arr: Array of numbers.

 :type arr: list, tuple, set

 :return: Mean of the values in the array.

 :rtype: float

 """

 summation = sum(arr)

 length = len(arr)

 result = summation / length

 return result

PYTHON

Now we have two functions, which can be used to calculate the variance, or the mean, for
any array of numbers.

Remember that testing a function is inherent to successful design. So let’s test our functions

def variance(arr):

 """

 Calculates the variance of an array.

 :param arr: Array of numbers.

 :type arr: list, tuple, set

 :return: Variance of the values in the array.

 :rtype: float

 """

 arr_mean = mean(arr)

 denominator = len(arr)

 numerator = 0

 for num in arr:

 numerator += (num - arr_mean) ** 2

 result = numerator / denominator

 return result

PYTHON

numbers = [1, 5, 0, 14.2, -23.344, 945.23, 3.5e-2]

PYTHON

numbers_mean = mean(numbers)

print(numbers_mean)

PYTHON

Now that we have a function to calculate the variance, we can easily proceed to calculate
the standard deviation, as well.

The standard deviation is calculated from the square root of variance. We can easily
implement this in a new function as follows:

134.58871428571427

OUTPUT

numbers_variance = variance(numbers)

print(numbers_variance)

PYTHON

109633.35462420408

OUTPUT

def stan_dev(arr):

 """

 Calculates the standard deviation of an array.

 :param arr: Array of numbers.

 :type arr: list, tuple, set

 :return: Standard deviation of the values in the array.

 :rtype: float

 """

 from math import sqrt

 var = variance(arr)

 result = sqrt(var)

 return result

PYTHON

Now let’s see how it works, in practice:

Write a function that — given an array of any values — produces a dictionary containing
the values within the array as keys, and the count of those values in the original array (their
frequencies), as values.

Example:

For the following array:

the function should return the above dictionary:

Suggestion: You can add this as a new tool to the statistics mini toolbox.

numbers_std = stan_dev(numbers)

print(numbers_std)

PYTHON

331.1092789762982

OUTPUT

PRACTICE EXERCISE 4

values = [1, 1.3, 1, 1, 5, 5, 1.3, 'text', 'text', 'something']

PYTHON

Solution

Exercises

def count_values(arr):

 """

 Converts an array into a dictionary of

 the unique members (as keys) and their

 counts (as values).

 :param arr: Array containing repeated

 members.

 :type arr: list, tuple

 :return: Dictionary of unique members

 with counts.

 :rtype: dict

 """

 unique = set(arr)

 arr_list = list(arr)

 result = dict()

 for num in unique:

 result[num] = arr_list.count(num)

 return result

PYTHON

Write a function with the following features:

Call the function get_basic_stats() and let it take one input argument which may
contain any number of input arrays, e.g. a tuple of arrays.

Using a for loop, for each of the arrays calculate the mean and the variance for each of
the arrays using the functions ‘mean’ and ‘variance’, given above, i.e. call these
functions from within the function get_basic_stats() .

Calculate the standard deviation for each array as the square root of the variance. You
will have to import the function sqrt from module math.

Return a single array containing (in that order) the mean, the variance and the
standard deviation for each array.

To test the function, combine three arrays in a tuple as follows:

Call the function get_basic_stats() with this tuple as an argument, and write the output
to a variable. Display the results in the following form:

STD of array' index, ':' STD

The result for the above arrays should be:

END OF CHAPTER EXERCISES

my_arrays = (

 [1, 2, 3, 4, 5],

 [7, 7, 7, 7],

 [1.0, 0.9, 1.2, 1.12, 0.95, 0.76],

)

PYTHON

STD of array 0 : 1.4142135623730951

STD of array 1 : 0.0

STD of array 2 : 0.14357537702854514

Solution

Functions can help to make repetitive tasks efficient, allowing the passing of values
into whole blocks of code, with a simple function call.

Keyword def is used to write a function.

Optional arguments do not require prior definition.

The potential interconnectivity of functions can make them very powerful.

KEY POINTS

