
Content from Getting started

Last updated on 2024-02-27 | Edit this page

Download Chapter notebook (ipynb)

Programming — why bother?
Data handling and analysis in bio-research and medicine is best done using coding. In October 2017, the American technology magazine
Wired published an article in which the author outlines reasons why several established bio-science researchers working in reputable
institutions felt the need to learn coding — speci�cally in Python: “Want to Make It as a Biologist? Better Learn to Code”.

Why Python?

OVERVIEW

Questions

Programming - why bother?

Why Python?

How to learn it?

Objectives

Understand the concept of programming

Understand the basics of Python language

WE FOCU S ON T HE PYT HON PROG RAMMING LANG U AG E T HROU G HOU T T HIS COU RSE, BU T WE DISCU SS
U NIVERSAL PRINCIPLES SHARED AMONG ST MANY PROG RAMMING LANG U AG ES. T HROU G H A DIVERSE
RANG E OF EXAMPLES, WE WILL BE T RAINING T HESE PRINCIPLES BY SOLVING PROBLEMS T HAT WE FACE
IN BIOLOG ICAL AND MEDICAL RESEARCH.

THIS COURSE

Basic Python

http://127.0.0.1:7966/01-getting_started.html
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/01-getting_started.Rmd
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/01-getting_started.Rmd
http://127.0.0.1:7966/01-getting_started.ipynb
https://www.wired.com/2017/03/biologists-teaching-code-survive/

Python is a general-purpose programming language. This means that it can be exploited to design any type of software, from desktop and
web, to robotics and automation, to data analysis. The 2020 survey conducted by the Python Software Foundation and JetBrains found
that approximately 85% of respondents used Python as their �rst language to conduct data analysis.

In addition, the 2021 developer survey conducted by StackOver�ow found that Python is the third most popular general-purpose
programming language after JavaScript and HTML/CSS. This means that it enjoys a vibrant community that support and maintain its
development, and the development of the libraries associated with it. This is con�rmed by the fact that the language is ranked as the
second most popular language on GitHub , which is the primary code-sharing platform amongst programmers.

Learning how to code as a beginner is akin to learning how to walk as a baby. You cannot learn programming by memorising
directives; no matter how well you memorise them. To learn how to code, one must learn how think algorithmically; that is, how to
break different tasks down into logical procedures. The only way to learn how to “think code” is to practice, make mistakes, and
how to overcome those mistakes. It is common to make the same mistake more than once, especially in different contexts, and that
can become frustrating at times. However, once you get it, you have it for life.

There are lots materials on the web, both free and paid, to assist with your learning. Use them to your advantage! Great
programmers are not the ones who know every technical detail by heart; rather, they are the ones who know what they are looking
for, and where they can �nd the answer.

Python: The Programming Language
Python is a general-purpose, high-level programming language. It was invented by the Dutch computer programmer Guido van Rossum
and was released for the �rst time in 1990.

A high-level programming language is a language that enjoys strong abstraction from computer details. This means that it is closer to the
language that is spoken and understood by humans; put simply: it makes the language more enjoyable to work with.

®

®

HOW TO LEARN?

U NLIKE POPU LAR BEL IEF, T HE NAME PYTHO N HAS NOT HING TO DO WIT H T HE SNAKE. IT IS IN FACT
DERIVED FROM T HE POPU LAR BRIT ISH SKETCH COMEDY SERIES MONT Y PYT HON’ S FLY ING CIRCU S, OF
WHICH INVENTOR G U IDO VAN ROSSU M WAS A SELF-CONFESSED FAN.

KNOWN QUIRK

https://www.jetbrains.com/research/python-developers-survey-2017/#types-of-development
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language
https://madnight.github.io/githut/#/pull_requests/2018/1
https://madnight.github.io/githut/#/pull_requests/2018/1
https://en.wikipedia.org/wiki/Guido_van_Rossum
https://en.wikipedia.org/wiki/Monty_Python%27s_Flying_Circus

In terms of compilation (the conversion of code into the binary symbols understood by a computer), programming languages may
be divided into two different categories:

1 - Compiled These are languages whose code is translated (compiled) into machine language en-masse, and in advance, using a
designated compiler programme — e.g. C, Rust, Haskell.

2- Interpreted These languages rely on and must always be accompanied by an interpreter, whose job is to translate the source
code into machine language one line at a time — e.g. Python, R, MATLAB .

Programming is an important skill which is highly applicable to bio-research and medicine.

Python is one of the most popular programming language for being general-purpose and high level language.

Python uses an interpreter for line by line code translation.

Content from Variables, Types, and Operations

Last updated on 2024-02-27 | Edit this page

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

CATEGORIES

®

KEY POINTS

OVERVIEW

Questions

What are I/O operations?

What do variables do?

Why types and scopes of variables are important?

What types of operations are used?

Objectives

Understanding the output and input operations

Build concepts of different types of variables

Learning about type conversions and scope

http://127.0.0.1:7966/02-input_output.html
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/02-input_output.Rmd
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/02-input_output.Rmd
http://127.0.0.1:7966/02-input_output.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1

The 'print' FunctionThe 'print' Function

Basic Python OperationsBasic Python Operations

Logical ExpressionsLogical Expressions

In programming, we process data and produce outputs. When data is being processed, it is stored in a memory, so that it is readily
available, and can therefore be subject to the processes we want to apply.

Throughout this section, we will discuss how to handle data in Python. We start by displaying data on the screen, and see how to receive
input from a user. We then use these techniques to perform different mathematical and logical operations. This chapter introduces the
fundamental principles that we employ every time we code in Python. On that account, make sure you understand everything before
moving on.

Understanding mathematical and logical operations

https://www.youtube.com/watch?v=Qr-UBp_AeDA
https://www.youtube.com/watch?v=rCwBVf4_XjM
https://www.youtube.com/watch?v=ht6MSOg0JeA

I/O Operations
In computer science, input or output operations refer to the communication between an information processing system such as a computer,
and the outside world, which may be a user or another computer. Such communications are more commonly known as I/O operations. In
general, the outside world — especially in the context of this course, may be loosely de�ned as anything that falls outside of the coding
environment.

In programming, I/O operations include, but are not limited to:

displaying the results of a calculation

require the user to enter a value

writing or reading data to and from a �le or a database

downloading data from the Internet

operating a hardware (e.g. a robot)

If you are interested in learning more about I/O systems and how they are handled at operating system level, you might bene�t
from chapter 13 of Operating Systems Concepts, 10 ed. by Abraham Silberschatz, Greg Gagne, and Peter Galvin.

I/O Operations in Python
Input and Output

In this section, we learn about two fundamental methods of I/O operations in Python. We will be using these methods throughout the course,
so it is essential that you feel comfortable with them and the way they work before moving on.

ONLY WHAT WE DEFINE WIT HIN T HE ENVIRONMENT AND WHAT WE STORE IN T HE MEMORY IS DIRECT LY
CONT ROLLED BY OU R APPL ICAT ION. WE MAY ACCESS OR TAKE CONT ROL OVER OT HER ENVIRONMENT S
T HROU G H CERTAIN MEDIU MS; HOWEVER, SU CH INT ERACT IONS ARE CLASSIFIED AS I / O OPERAT IONS. AN
EXAMPLE OF T HIS IS INT ERACT ING WIT H A FILE ON OU R COMPU T ER, WHICH WE DISCU SS IN T HE TOPIC
OF ST RING S. WHILST WE HAVE COMPLET E CONT ROL OVER A FILE WHILE WORKING ON IT (E.G . READING
FROM IT OR WRIT ING TO IT) , T HE ACCESS TO T HE FILE AND T HE T RANSMISSION OF DATA IS IN FACT
CONT ROLLED AND MANAG ED NOT BY T HE PROG RAMMING ENVIRONMENT BU T BY T HE OPERAT ING
SY ST EM OF T HE COMPU T ER.

REMEMBER

ADVANCED TOPIC

th

https://os.ecci.ucr.ac.cr/slides/Abraham-Silberschatz-Operating-System-Concepts-10th-2018.pdf
https://os.ecci.ucr.ac.cr/slides/Abraham-Silberschatz-Operating-System-Concepts-10th-2018.pdf
https://docs.python.org/3/tutorial/inputoutput.html
http://127.0.0.1:7966/07-strings.html

Print

The term output in reference to an application typically refers to data that has either been generated or manipulated by that
application.

For example; we have two number and we would like to calculate their sum. The action of calculating the sum is itself a
mathematical operation (discussed in the coming section). The result of our calculation is called an output. Once we obtain the
result, we might want to save it in a �le or display it on the screen, in which case we will be performing an I/O operation.

The simplest and most frequently used method for generating an output in almost every modern programming language is to
display something on the screen. We recommend using JupyterLab notebooks to run our scripts and the typical method to produce
an output is to display it in cell below the code.To do this, we will call a dedicated built-in function named print() .

The print() function can take several inputs and performs different tasks. Its primary objective, however, is to take some values
as input and display them on the screen. Here is how it works:

Suppose we want to display some text in the terminal. To do so, we write:

print('Hello world!')

in a cell of our notebook (or, if not using a notebook, an editor or IDE) and save the notebook in a �le. This is now a fully functioning
Python programme that we can run using the Python interpreter.

If you are using an Integrated Development Environment (IDE) — e.g. Visual Studio Code, you have to save the code in a �le with
extension .py and may then execute your code using the internal tools provided by that IDE. The speci�cs of how you do so depend
on the IDE that you are using.

.py Python scripts can also be executed manually. To do so, we open the terminal in MacOS or Linux or the command prompt
(CMD) in Windows and navigate to the directory where we saved the script.

If you don’t know how to navigate in the terminal, see the example in section How to use terminal environment? at the end
of this chapter.

Once in the correct directory, we run a script called script_a.py by typing python3 script_a.py in our terminal as follows:

PRODUCING AN OUTPUT

IN PROG RAMMING , A function IS ESSENT IALLY AN ISOLAT ED PIECE OF CODE. IT U SU ALLY TO
TAKES SOME INPU T S, DOES SOMET HING TO OR WIT H T HEM, AND PRODU CES AN output . T HE PAIR
OF (T YPICALLY ROU ND) PARENT HESIS T HAT FOLLOW A FU NCT ION ARE T HERE TO PROVIDE T HE
FU NCT ION WIT H T HE INPU T ARG U MENT S IT NEEDS WHEN WE CALL IT, SO T HAT IT CAN DO WHAT
IT IS SU PPOSED TO DO U SING OU R DATA. WE WILL EXPLORE FU NCT IONS IN MORE DETAILS IN
LESSON 4 FU NCT IONS.

REMEMBER

NOTE

https://docs.python.org/3/library/functions.html#print
http://127.0.0.1:7966/06-functions.html

This will call the Python 3 interpreter to execute the code we wrote in script_a.py. Once executed, which in this case should be
instantaneously, we should see the output.

In a JupyterLab notebook we can press the keyboard shortcut ‘shift-enter’ to execute the code in a cell. The output will be
displayed below the code cell.

Congratulations you have now successfully written and executed your �rst programme in Python.

We can pass more than a single value to the print() function, provided that they are separated with a comma. For instance, if we write
the code below and run the script, the results would be as shown in output.

Notice that there is a space between ‘Hello’ and ‘John’ even though we did not include a space in our text. This is the default behaviour of
the print() function when it receives more than a single value (argument).

This default behaviour may be changed:

python3 script_a.py

BASH

Hello world!

OUTPUT

WE KNOW print() IS A FU NCT ION BECAU SE IT ENDS WIT H A PAIR OF PARENT HESIS , AND IT IS
WRIT T EN ENT IRELY IN LOWERCASE CHARACT ERS PEP-8 : FU NCT ION NAMES. SOME IDES CHANG E COLOR
WHEN T HEY ENCOU NT ER BU ILT- IN FU NCT IONS IN T HE CODE SO T HAT WE WON’ T ACCIDENTALLY
OVERWRIT E T HEM. WE SHALL DISCU SS FU NCT IONS IN MORE DETAILS IN LESSON 4 FU NCT IONS.

REMEMBER

print('Hello', 'John')

PYTHON

Hello John

OUTPUT

print('Hello', 'John', sep='')

PYTHON

https://www.python.org/dev/peps/pep-0008/#function-names
http://127.0.0.1:7966/06-functions.html

Explanation of a function call

HelloJohn

OUTPUT

print('Hello', 'John', sep='--')

PYTHON

Hello--John

OUTPUT

print('Jane', 21, 'London', sep='.')

PYTHON

Jane.21.London

OUTPUT

Write code that displays the following output:

Protein Kinase C (Alpha subunit)

Solution

Terminal window on a Linux computer

DO IT YOURSELF

print('Protein Kinase C (Alpha subunit)')

PYTHON

Protein Kinase C (Alpha subunit)

OUTPUT

Terminal window on a Mac

Input

Inputs are I/O operations that involve receiving some data from the outside world. This might include reading the contents of a �le,
downloading something from the Internet, or asking the user to enter a value.

The simplest way to acquire an input is to ask the user to enter a value in the terminal. To do so, we use a dedicated built-in
function called input() .

The function takes a single argument called prompt. Prompt is the text displayed in the terminal to ask the user for an input. Figure
Terminal window on a Linux computer and Terminal window on a Mac, illustrates a screen shot of my personal computer’s prompt,
where it displays my user name (i.e. pouria) followed by a tilde (~). A terminal prompt may be different in each computer and
operating system.

Here is how we implement the input() function:

input('Please enter your name: ')

which is exactly the same as:

input(prompt='Please enter your name: ')

If we save one of the above in a notebook and execute it, we will see:

python3 script_b.py

Please enter your name: _

The terminal cursor, displayed as an underscore in our example, will be in front of the prompt (i.e. 'Please enter your name: ')
waiting for a response. Once it receives a response, it will proceed to run the rest of the code (if any), or terminate the execution.

We may store the user’s response in a variable. Variables are the topic of the next section, where we shall also review more
examples on input() and how we can use it to produce results based on the responses we receive from the user.

RECEIVING AN INPUT

IN A U NIX SYST EM (MAC OS OR L INU X) , A T ILDE (~) IS AN AL IAS FOR A U SER’ S HOME DIRECTORY.

NOTE

https://docs.python.org/3/library/functions.html#input

Write a script that asks the user to enter the name of a protein in the terminal.

Solution

input('Please enter the name of a protein: ')

Variables And Types
We use variables to store data in the memory. Each variable has 3 characteristics: scope, name, and type. Scope and name must be
mutually unique. Starting with name, we will discuss each of these characteristics in more details throughout this chapter.

Variable names
PEP–8 Naming Conventions

Name of a variable is in fact an alias for a location in the memory. You can think of it as a postbox, which is used as a substitute for an
address. Similarly, we use variable names so we wouldn’t have to use the actual address to the location we want in the memory because it
would look something like 0x106fb8348.

There are some relatively simple rules to follow when de�ning variable names, which ultimately boil down to:

PY T HON IS AN INT ERPRET ED LANG U AG E; T HAT IS , T HE CODE WE WRIT E IS EXECU T ED BY T HE PYT HON
INT ERPRET ER ONE L INE AT A T IME. T HE input() FU NCT ION PERFORMS A BLOCKING PROCESS. T HIS
MEANS T HAT T HE EXECU T ION OF T HE CODE BY T HE PYT HON INT ERPRET ER IS HALT ED U PON
ENCOU NT ERING AN input() FU NCT ION U NT IL T HE U SER ENT ERS A VALU E. ONCE A VALU E IS ENT ERED,
T HE INT ERPRET ER T HEN PROCEEDS TO EXECU T E T HE NEXT L INE.

REMEMBER

DO IT YOURSELF

https://www.python.org/dev/peps/pep-0008/#naming-conventions

Once a variable is de�ned, its value may be altered or reset:

Variables containing integer numbers are known as int, and those containing decimal numbers are known as float in Python.

WE SHOU LD NEVER OVERWRIT E AN EXIST ING , BU ILT- IN DEFINIT ION OR IDENT IFIER (E.G . int OR print) .
WE WILL BE LEARNING MANY SU CH DEFINIT IONS AND IDENT IFIERS AS WE PROG RESS T HROU G H T HIS
COU RSE. NONET HELESS, T HE JU PYT ERLAB NOT EBOOK AS WELL AS ANY G OOD IDE HIG HLIG HT S
SY NTAXES AND BU ILT- IN IDENT IFIERS IN DIFFERENT COLOU RS. IN JU PYT ERLAB T HE DEFAU LT FOR BU ILT-
IN DEFINIT IONS IS G REEN. T HE EXACT COLOU RING SCHEME DEPENDS ON T HE IDE AND T HE T HEME.

REMEMBER

total_items = 2

print(total_items)

PYTHON

2

OUTPUT

total_items = 3

print(total_items)

PYTHON

3

OUTPUT

Variables can contain characters as well; but to prevent Python from confusing them with meaningful commands, we use quotation marks.
So long as we remain consistent, it doesn’t matter whether we use single or double quotations. These variables are known as string or str:

total_values = 3.2

print(total_values)

PYTHON

3.2

OUTPUT

temperature = 16.

print(temperature)

PYTHON

16.0

OUTPUT

forename = 'John'

surname = "Doe"

print('Hi,', forename, surname)

PYTHON

Hi, John Doe

OUTPUT

Oxidised low-density lipoprotein (LDL) receptor 1 mediates the recognition, internalisation and degradation of oxidatively modi�ed
low density lipoprotein by vascular endothelial cells. Using the Universal Protein Resource (UniProt) website, �nd this protein for
humans, and identify:

UniProt entry number.

Length of the protein (right at the top).

Gene name (right at the top).

Store the information you retrieved, including the protein name, in 4 separate variables.

Display the values of these 4 variables in one line, and separate the items with 3 spaces, as follows:

Name EntryNo GeneName Length

Solution

DO IT YOURSELF

name = 'Oxidised low-density lipoprotein (LDL) receptor 1'

uniprot_entry = 'P78380'

gene_name = 'OLR1'

length = 273

print(name, uniprot_entry, gene_name, length, sep=' ')

PYTHON

Oxidised low-density lipoprotein (LDL) receptor 1 P78380 OLR1 273

OUTPUT

https://beta.uniprot.org/

1. Write a script that upon execution, asks the user to enter the name of an enzyme and then retains the response in an
appropriately named variable.

2. Use the variable to display an output similar to the following:

ENZYME_NAME is an enzyme.

where ENZYME_NAME is the name of the enzyme entered in the prompt.

3. Now alter your script to ask the user to enter the number of amino acids in that enzyme. Retain the value in another
appropriately named variable.

4. Alter the output of your script to display a report in the following format:

ENZYME_NAME is an enzyme containing a total number of AMINO_ACIDS} amino acids.

where AMINO_ACIDS is the number of amino acids.

Solution

enzyme = input('Please enter the name of an enzyme: ')

print(enzyme, 'is an enzyme.')

length = input('How many amino acids does the enzyme contain? ')

print(enzyme, 'is an enzyme containing a total number of', length, 'amino acids.')

Variable Types
Built-in Types

When it comes to types, programming languages may be divided into two distinct categories:

Statically typed language that require the programmer to de�ne the type for every variable (statically typed).

Dynamically typed languages that de�ne and maintain the types on the �y.

Python is a dynamically typed language. This means that, unlike statically typed languages, we rarely need to worry about the
type de�nitions because in the majority of cases, Python takes care of them for us.

DO IT YOURSELF

TYPES

https://docs.python.org/3/library/stdtypes.html

In computer programming, type systems are syntactic methods to enforce and / or identify levels of abstraction. An entire �eld in
computer science has been dedicated to the study of programming languages from a type–theoretic approach. This is primarily
due to the implication of types and their underlying principles in such areas in software engineering as optimisation and security. To
learn more about the study of type systems, refer to: Pierce B. Types and programming languages. Cambridge, Mass.: MIT Press;
2002.

Why learn about types in a dynamically typed programming language?

Python enjoys a powerful type system out of the box. Table Built-in types in Python provides a comprehensive reference for the built-in
types in Python. Built-in types are the types that exist in the language and do not require any third party libraries to implement or use.

IN A DYNAMICALLY T YPED LANG U AG E, IT IS T HE VALU E OF A VARIABLE T HAT DET ERMINES T HE T YPE.
T HIS IS BECAU SE T HE T YPES ARE DET ERMINED ON T HE FLY BY T HE PYT HON INT ERPRET ER AS AND WHEN
IT ENCOU NT ERS DIFFERENT VARIABLES AND VALU ES.

REMEMBER

ADVANCED TOPIC

T HE VALU ES DET ERMINE T HE T YPE OF A VARIABLE IN DYNAMICALLY T YPED LANG U AG ES. T HIS IS IN
CONT RAST WIT H STAT ICALLY T YPED LANG U AG ES WHERE A VARIABLE MU ST BE INIT IAL ISED U SING A
SPECIFIC T YPE BEFORE A VALU E — WHOSE T YPE IS CONSIST ENT WIT H T HE INIT IAL ISED VARIABLE, CAN
BE ASSIG NED TO IT.

NOTE

A comprehensive (but non-exhaustive) reference of built-in (native) types in Python 3.
 Not discussed in this course — included for reference only.
dict is not an iterable by default, however, it is possible to iterate through its keys.

Mutability is an important concept in programming. A mutable object is an object whose value(s) may be altered. This will become clearer
once we study list and tuple. Find out more about mutability in Python from the documentations}.

Complex numbers refer to a set of numbers that have a real part, and an imaginary part; where the imaginary part is de�ned as .
These numbers are very useful in the study of oscillatory behaviours and �ow (e.g. heat, �uid, electricity). To learn more about complex
numbers, watch this Khan Academy video tutorial.

Sometimes we might need want to know what is the type of a variable. To do so, we use the build-in function type() as follows:

*

$

−1
−−−

√

total_items = 2

print(type(total_items))

PYTHON

<class 'int'>

OUTPUT

total_values = 3.2

print(type(total_values))

PYTHON

<class 'float'>

OUTPUT

temperature = 16.

print(type(temperature))

PYTHON

<class 'float'>

OUTPUT

phase = 12.5+1.5j

print(type(phase))

PYTHON

https://en.wikipedia.org/wiki/Immutable_object
https://docs.python.org/3.9/reference/datamodel.html
http://thinkzone.wlonk.com/Numbers/NumberSets.htm
https://www.khanacademy.org/math/algebra2/introduction-to-complex-numbers-algebra-2/the-complex-numbers-algebra-2/v/complex-number-intro

Determine and display the type for each of these values:

32

24.3454

2.5 + 1.5

“RNA Polymerase III”

0

.5 - 1

1.3e-5

3e5

The result for each value should be represented in the following format:

Value X is an instance of <class 'Y'>

<class 'complex'>

OUTPUT

full_name = 'John Doe'

print(type(full_name))

PYTHON

<class 'str'>

OUTPUT

IN PYT HON, A VARIABLE / VALU E OF A CERTAIN T YPE MAY BE REFERRED TO AS AN INSTANCE OF T HAT
T Y PE. FOR INSTANCE, AN INT EG ER VALU E WHOSE T YPE IN PYT HON IS DEFINED AS INT IS SAID TO BE AN
I NSTANCE O F TYPE int .

REMEMBER

DO IT YOURSELF

Solution

value = 32

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value 32 is an instance of <class 'int'>

OUTPUT

value = 24.3454

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value 24.3454 is an instance of <class 'float'>

OUTPUT

value = 2.5 + 1.5

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value 4.0 is an instance of <class 'float'>

OUTPUT

value = "RNA Polymerase III"

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value RNA Polymerase III is an instance of <class 'str'>

OUTPUT

value = 0

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value 0 is an instance of <class 'int'>

OUTPUT

value = .5 - 1

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value -0.5 is an instance of <class 'float'>

OUTPUT

value = 1.3e-5

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value 1.3e-05 is an instance of <class 'float'>

OUTPUT

value = 3e5

value_type = type(value)

print('Value', value, 'is an instance of', value_type)

PYTHON

Value 300000.0 is an instance of <class 'float'>

OUTPUT

Conversion of types

It is sometimes necessary to have the values returned by the input() function — i.e. the user’s response, in other types. Imagine
the following scenario:

“We ask our user to enter the total volume of their puri�ed protein, so that we can work out the amount of assay they need to
conduct a speci�c experiment. To calculate this assay volume using the volume of the puri�ed protein, we need to perform
mathematical calculations based on the response we receive from our user. It is not possible to perform mathematical operations
on non-numeric values. Therefore, we ought to somehow convert the type from str to a numeric type.”

The possibility of converting from one type to another depends entirely on the value, the source type, and the target type. For
instance; we can convert an instance of type str (source type) to one of type int (target type) if and only if the source value
consists entirely of numbers and there are no other characters.

Here is an example of how we convert types in Python:

WHY CONVERT TYPES?

TO CONVERT A VARIABLE FROM ONE T YPE TO ANOT HER, WE U SE T HE T YPE NAME OF T HE TARG ET T Y PE
(AS DESCRIBED IN TABLE BU ILT- IN T YPES IN PYT HON AND T REAT IT AS A FU NCT ION.

FOR INSTANCE, TO CONVERT A VARIABLE TO INT EG ER, WE:

LOOK UP THE TYPE NAME FOR INTEGER FROM TABLE BUILT- IN TYPES IN PYTHON

THEN TREAT THE TYPE NAME AS A FUNCTION: int()

USE THE FUNCTION TO CONVERT OUR VARIABLE : NEW_VAR = int (OLD_VAR)

REMEMBER

value_a = '12'

print(value_a, type(value_a))

PYTHON

12 <class 'str'>

OUTPUT

value_b = int(value_a)

print(value_b, type(value_b))

PYTHON

If we attempt to convert a variable that contains non-numeric values, a ValueError is raised:

12 <class 'int'>

OUTPUT

value_a = '12y'

print(value_a, type(value_a))

PYTHON

12y <class 'str'>

OUTPUT

value_b = int(value_a)

PYTHON

Error: ValueError: invalid literal for int() with base 10: '12y'

ERROR

In programming, we routinely face errors resulting from different mistakes. The process of �nding and correcting such mistakes in
the code is referred to as debugging.

We have been given the following snippet written in Python 3:

value_a = 3

value_b = '2'

result = value_a + value_b

print(value_a, '+', value_b, '=', result)

but when the code is executed, we encounter an error message as follows:

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'str'

Debug the snippet so that the correct result is displayed:

3 + 2 = 5

Solution

DO IT YOURSELF

value_a = 3

value_b = '2'

result = value_a + int(value_b)

print(value_a, '+', value_b, '=', result)

PYTHON

3 + 2 = 5

OUTPUT

Handling input variables

When we use input() to obtain a value from the user, the results are by default an instance of type str. An input() function
always stores the response as a str value, no matter what the user enters. However, it is possible to convert the type afterwards.

We may use type conversion in conjunction with the values returned by the input() function:

response = input('Please enter a numeric value: ')

response_numeric = float(response)

print('response:', response)

print('response type:', type(response))

print('response_numeric:', response_numeric)

print('response_numeric type:', type(response_numeric))

The output shows the results when we enter numeric values as directed.

We know that each amino acid in a protein is encoded by a triplet of mRNA nucleotides.

With that in mind, alter the script you wrote for Do it Yourself and use the number of amino acids entered by the user to calculate
the number of mRNA nucleotides.

Display the results in the following format:

ENZYME_NAME is an enzyme with AMINO_ACIDS amino acids and NUCLEOTIDES nucleotides.

where NUCLEOTIDES is the total number of mRNA nucleotides that you calculated.

Note: Multiplication is represented using the asterisk (*) sign.

DISCUSSION

T HE input() FU NCT ION ALWAYS RET U RNS A VALU E OF T YPE str REG ARDLESS OF T HE U SER’ S
RESPONSE. IN OT HER WORDS, IF A U SER’ S RESPONSE TO AN input() REQU EST IS NU MERIC, PYT HON
WILL NOT AU TOMAT ICALLY RECOG NISE IT AS A NU MERIC T YPE.

REMEMBER

DO IT YOURSELF

Solution

enzyme = input('Please enter the name of an enzyme: ')

length = input('How many amino acids does the enzyme contain? ')

nucleotides = 3 * int(length)

print(enzyme, 'is an enzyme with', length, 'amino acids and', nucleotides, 'nucleotides.')

Variable scopes
Resolution of names
When de�ning a variable, we should always consider where in our programme we intent to use it. The more localised our variables, the
better. This is because local variables are easier to distinguish, and thus reduce the chance of making mistakes — e.g. unintentionally
rede�ne or alter the value of an existing variable.

To that end, the scope of a variable de�nes the ability to reference a variable from different points in our programmes. The concept of local
variables becomes clearer once we explore functions in programming in chapter Functions.

As displayed in Figure Variable scopes, the point at or from which a variable can be referenced depends on the location where the variable
is de�ned.

In essence, there are three general rules to remember in relation variable scopes in Python:

I. A variable that is de�ned in the outer scope, can be accessed or called in the inner scopes, but it cannot be altered implicitly. Not that such
variables may still be altered using special techniques (not discussed).

II. A variable that is de�ned in the innermost scopes (local), can only be accessed, called, or altered within the boundaries of the scope it is
de�ned in.

III. The inner scopes from which a variable is referenced must themselves have be contained within the de�ning scope — e.g. in FuncB of
Figure Variable scopes, we can reference a, b, and x; but not f1. This is because the scope of f1 is Script → FuncA, so it can only be
referenced from Script → FuncA → … , but not `Script → … or Script → FuncB → … .

https://docs.python.org/3.6/reference/executionmodel.html#resolution-of-names
http://127.0.0.1:7966/06-functions.html

Variable scopes in Python with respect to scripts and functions.

Python is an interpreted language. This means that the Python interpreter goes through the codes that we write line by line, interpreting it
to machine language. It is only then that the commands are processed and executed by the computer. On that account, a variable (or a
function) can be referenced only after its initial de�nition. That is why, for instance, in Script (part 2) of Figure Variable scopes, we can
reference every variable and function except for FuncC, which is declared further down the code hierarchy.

Although scope and hierarchy appear at �rst glance as theoretical concepts in programming, their implications are entirely practical. The
de�nition of these principles vary from one programming language to another. As such, it is essential to understand these principles and
their implications in relation to any programming language we are trying to learn.

Optional: How to use terminal environment?

Operations
Through our experimentations with variable types, we already know that variables may be subject to different operations.

When assessing type conversions we also established that the operations we can apply to each variable depend on the type of that
variable. To that end, we learned that although it is sometimes possible to mix variables from different types to perform an operation —
e.g. multiplying a �oating point number with an integer, there are some logical restrictions in place.

Throughout this section, we will take a closer look into different types of operations in Python. This will allow us to gain a deeper insight into
the concept and familiarise ourselves with the underlying logic.

To recapitulate on what we have done so far, we start off by reviewing additions — the most basic of all operations.

Give the variable total_items:

We can increment the value of an existing variable by 1 as follows:

Given 2 different variables, each containing a different value; we can perform an operation on these values and store the result in another
variable without altering the original variables in any way:

We can change the value of an existing variable using the value stored in another variable:

total_items = 2

print(total_items)

PYTHON

2

OUTPUT

total_items = total_items + 1

print(total_items)

PYTHON

3

OUTPUT

old_items = 4

new_items = 3

total_items = old_items + new_items

print(total_items)

PYTHON

7

OUTPUT

There is also a shorthand method for applying the operation on an existing variable:

As highlighted in the introduction, different operations may be applied to any variable or value. Throughout the rest of this section, we will
explore the most fundamental operations in programming, and learn about their implementation in Python.

new_items = 5

total_items = total_items + new_items

print(total_items)

PYTHON

12

OUTPUT

total_items = 2

print(total_items)

PYTHON

2

OUTPUT

total_items += 1

print(total_items)

PYTHON

3

OUTPUT

new_items = 5

total_items += new_items

print(total_items)

PYTHON

8

OUTPUT

Mathematical Operations
Suppose a and b are 2 variables representing integer numbers as follows:

a = 17

b = 5

Using a and b we can itemise built-in mathematical operations in Python as follows:

Routine mathematical operations in Python

T HERE ARE 2 VERY G ENERAL CAT EG ORIES OF OPERAT IONS IN PROG RAMMING : MAT HEMAT ICAL , AND
LOG ICAL . NAT U RALLY, WE U SE MAT HEMAT ICAL OPERAT IONS TO PERFORM CALCU LAT IONS, AND
LOG ICAL OPERAT IONS TO PERFORM T EST S.

REMEMBER

AS FAR AS MAT HEMAT ICAL OPERAT IONS ARE CONCERNED, VARIABLES a AND b MAY BE AN INSTANCE OF
ANY NU MERIC T YPE. SEE TABLE ROU T INE MAT HEMAT ICAL OPERAT IONS IN PYT HON TO FIND OU T MORE
ABOU T NU MERIC T YPES IN PYT HON.

VALU ES OF T YPE int HAVE BEEN CHOSEN IN OU R EXAMPLES TO FACIL ITAT E T HE U NDERSTANDING OF
T HE RESU LT S.

REMEMBER

1. Calculate the following and store the results in appropriately named variables:

a.

b.

c.

d.

e.

Display the result of each calculation – including the type, in the following format:

Result: X is an instance of <class 'Y'>

2. Now using the results you obtained:
I. Can you explain why is the result of is an instance of type float, whilst that of is of type int?

II. Unlike the numeric types, string values have a length. To obtain the length of a string value, we use len() . Convert the result for
 from int to str, then use the aforementioned function to work out the length of the number — i.e. how many digits is it made

of?

If you feel adventurous, you can try this for or higher; but beware that you might overwhelm your computer and need a
restart it if you go too far (i.e. above). Just make sure you save everything beforehand, so you don’t accidentally step on
your own foot.}

Hint: We discuss len() in subsection of arrays. However, at this point, you should be able to use the of�cial documentations and
StackOver�ow to work out how it works.

DO IT YOURSELF

5.8 × 3.3

180
6

35 − 3.0

35 − 3

21000

35 − 3.0 35 − 3

21000

210000

21000000

http://127.0.0.1:7966/04-arrays.html

Solution

q1_a = 5.8 * 3.3

print('Result:', q1_a, 'is an instance of', type(q1_a))

PYTHON

Result: 19.139999999999997 is an instance of <class 'float'>

OUTPUT

q1_b = 180 / 6

print('Result:', q1_b, 'is an instance of', type(q1_b))

PYTHON

Result: 30.0 is an instance of <class 'float'>

OUTPUT

q1_c = 35 - 3.0

print('Result:', q1_c, 'is an instance of', type(q1_c))

PYTHON

Result: 32.0 is an instance of <class 'float'>

OUTPUT

q1_d = 35 - 3

print('Result:', q1_d, 'is an instance of', type(q1_d))

PYTHON

Result: 32 is an instance of <class 'int'>

OUTPUT

q1_e = 2 ** 1000

print('Result:', q1_e, 'is an instance of', type(q1_e))

PYTHON

Result: 107150860718626732094842504906000181056140481170553360744375038837035105112493612249319837881569

OUTPUT

Solution

In the case of vs , the former includes a �oating point number. Operations involving multiple numeric types always
produce the results as an instance of the type that covers all of the operands – i.e. float covers int, but not vice-versa.

Solution

Shorthands
When it comes to mathematical operations in Python, there is a frequently used shorthand method that every Python programmer should
be familiar with.

Suppose we have a variable de�ned as total_residues = 52 and want to perform a mathematical operation on it. However, we would like
to store the result of that operation in total_residues instead of a new variable. In such cases, we can do as follows:

35 − 3.0 35 − 3

big_num = 2 ** 1000

big_num_str = str(big_num)

big_num_len = len(big_num_str)

print('Length of 2**1000:', big_num_len)

PYTHON

Length of 2**1000: 302

OUTPUT

AS OF PYT HON 3 . 6 , YOU CAN U SE AN U NDERSCORES (_) WIT HIN LARG E NU MBERS AS A SEPARATOR TO
MAKE T HEM EASIER TO READ IN YOU R CODE. FOR INSTANCE, INST EAD OF x = 1000000 , YOU CAN WRIT E
x = 1_000_000 .

INTERESTING FACT

total_residues = 52

Addition:

total_residues += 8

print(total_residues)

PYTHON

60

OUTPUT

Subtraction:

total_residues -= 10

print(total_residues)

PYTHON

50

OUTPUT

Multiplication:

total_residues *= 2

print(total_residues)

PYTHON

100

OUTPUT

Division:

total_residues /= 4

print(total_residues)

PYTHON

25.0

OUTPUT

Floor quotient:

total_residues //= 2

print(total_residues)

PYTHON

12.0

OUTPUT

We can also perform such operations using multiple variables:

Remainder:

total_residues %= 5

print(total_residues)

PYTHON

2.0

OUTPUT

Power:

total_residues **= 3

print(total_residues)

PYTHON

8.0

OUTPUT

total_residues = 52

new_residues = 8

number_of_proteins = 3

total_residues += new_residues

print(total_residues)

PYTHON

60

OUTPUT

total_residues += (number_of_proteins * new_residues)

print(total_residues)

PYTHON

84

OUTPUT

1. Given:

Circumference:

Radius:

and considering that the properties of a circle are de�ned as follows:

calculate using the above equation and store it in a variable named pi:

Then round the results to 5 decimal places and display the result in the following format:

The value of pi calculated to 5 decimal places: X.XXXXX

Note: To round �oating point numbers in Python, we use round() . This is a built-in function that takes 2 input arguments: the �rst
is the variable/value to be rounded, and the second is the number decimal places. Read more about round() in the of�cial
documentations.

2. Now without creating a new variable, perform the following operation:

where the expression ’‘ ’’ represents the remainder for the division of 3 by 2.

DO IT YOURSELF

C = 18.84956

R = 3

π =
C

D

π

pi =
pi

(3 mod 2) − 1

3 mod 2

https://docs.python.org/3/library/functions.html#round
https://docs.python.org/3/library/functions.html#round

Explain the output.

Solution

Solution

pi /= (3 % 2) - 1

The calculation raises a ZeroDivisionError. This is because division by zero is mathematically impossible.

Precedence
In mathematics and computer programming, there is a collection of conventional rules on the precedence of procedures to evaluate a
mathematical expression. This collection of rules is referred to as the order of operation or operator precedence.

Suppose we have a mathematical expression as follows:

Such an expression can only be evaluated correctly if we do the multiplication �rst and then perform the addition. This means that the
evaluation is done as follows:

For instance, in an expression such as:

the evaluation work�ow may be described as follows:

The same principle applies in Python. This means that if we use Python to evaluate the above expression, the result would be identical:

c = 18.84956

r = 3

d = r * 2

pi = c / d

print('The value of pi calculated to 5 decimal places:', round(pi, 5))

PYTHON

The value of pi calculated to 5 decimal places: 3.14159

OUTPUT

x = 2 + 3 × 9

given : 3 × 9 = 27

⟹ x = 2 + 27

= 29

x = 2 × (3 + (5 − 1))2

x = 2 × (3 +)42

= 2 × (3 + 16)

= 38

result = 2 * (3 + (5 - 1) ** 2)

print(result)

PYTHON

38

OUTPUT

OPERATOR PRECEDENCE IN MAT HEMAT ICAL OPERAT IONS MAY BE DESCRIBED AS FOLLOWS:

1. EXPONENTS AND ROOTS

2. MULTIPLICATION AND DIV ISION

3. ADDITION AND SUBTRACTION

IF T HERE ARE ANY PARENT HESIS () IN T HE EXPRESSION, T HE EXPRESSION IS EVALU AT ED FROM T HE
INNERMOST PARENT HESIS OU T WARDS.

REMEMBER

Display the result of each item in the following format:

EXPRESSION = RESULT

For example:

 2 + 3 = 5

1. Calculate each expression without using parentheses:

a.

b.

c.

d.

2. Calculate these expressions using parentheses:

a.

b.

c.

3. Given

a = 2

b = 5

use a and b to calculate the following expressions:

a.

b.

DO IT YOURSELF

3 × 2
4

5 + 3 × 2
4

3 × + 52
4

× 32
4

5 + × 32
4

5 + 2×3
4

5 + 2
4×3

(a + b)2

+ 2ab +a2 b2

Solution

q1_a = 3 * 2 / 4

print('3 * 2 / 4 =', q1_a)

PYTHON

3 * 2 / 4 = 1.5

OUTPUT

q1_b = 5 + 3 * 2 / 4

print('5 + 3 * 2 / 4 =', q1_b)

PYTHON

5 + 3 * 2 / 4 = 6.5

OUTPUT

q1_c = 3 * 2 / 4 + 5

print('3 * 2 / 4 + 5 =', q1_c)

PYTHON

3 * 2 / 4 + 5 = 6.5

OUTPUT

q1_d = 2 / 4 * 3

print('2 / 4 * 3 =', q1_d)

PYTHON

2 / 4 * 3 = 1.5

OUTPUT

Solution

q2_a = 5 + (2 / 4) * 3

print('5 + (2 / 4) * 3 =', q2_a)

PYTHON

5 + (2 / 4) * 3 = 6.5

OUTPUT

q2_b = 5 + (2 * 3) / 4

print('5 + (2 * 3) / 4 =', q2_b)

PYTHON

5 + (2 * 3) / 4 = 6.5

OUTPUT

q2_c = 5 + 2 / (4 * 3)

print('5 + 2 / (4 * 3) =', q2_c)

PYTHON

5 + 2 / (4 * 3) = 5.166666666666667

OUTPUT

Solution

Non-numeric values
It sometimes makes sense to apply some mathematical operations to non-numeric variables too.

We can multiply strings to repeat them. There is no speci�c advantage to the use of multiplication instead of manually repeating characters
or words, but it makes our code look cleaner, and that’s always a good thing!

We can also add string values to each other. This is called string concatenation. It is a useful method for concatenating a few strings and /
or string variables.

a = 2

b = 5

q3_a = (a + b) ** 2

print('(a + b)^2 =', q3_a)

PYTHON

(a + b)^2 = 49

OUTPUT

q3_b = a ** 2 + 2 * a * b + b ** 2

print('a^2 + 2ab + b^2 =', q3_b)

PYTHON

a^2 + 2ab + b^2 = 49

OUTPUT

SEPARATOR = '-' * 20

NEW_LINE = '\n'

SPACE = ' '

forename = 'Jane'

surname = 'Doe'

birthday = '01/01/1990'

full_name = forename + SPACE + surname

data = full_name + NEW_LINE + SEPARATOR + NEW_LINE + 'DoB: ' + birthday

print(data)

PYTHON

Jane Doe

DoB: 01/01/1990

OUTPUT

NEW L INE CHARACT ER OR '\n' IS A U NIVERSAL DIRECT IVE TO INDU CE A L INE-BREAK IN U NIX BASED
OPERAT ING SYST EMS (MACOS) AND L INU X) . IN WINDOWS, WE U SU ALLY U S '\r' OR '\r\n' INST EAD.
T HESE ARE KNOWN AS ESCAPE SEQU ENCES, WHICH WE EXPLORE IN ADDIT IONAL DETAILS U NDER
ST RING OPERAT IONS IN CHAPT ER ST RING S

REMEMBER

http://127.0.0.1:7966/07-strings.html#subsubsec:escapeSequences
http://127.0.0.1:7966/07-strings.html#subsec:stringOperations
http://127.0.0.1:7966/07-strings.html

The risk of Huntington’s disease appears to increase proportional to the continuous repetition of CAG nucleotides (glutamine codon)
once they exceed 35 near the beginning of the Huntingtin (IT15) gene. The CAG repeats are also referred to as a polyglutamine or
polyQ tract.

glutamine_codon = 'CAG'

1. Create a polynucleotide chain representing 36 glutamine codons. Store the result in a variable called polyq_codons.

Display the result as:

Polyglutamine codons with 36 repeats: XXXXXXXXX...

2. Use len() to work out the length of polyq_codons, and store the result in a variable called polyq_codons_length.

Display the result in the following format:

Number of nucleotides in a polyglutamine with 36 repeats: XXX

3. Use len() to work out the length of glutamin_codon, and store the result in variable amino_acids_per_codon.

4. Divide polyq_codons_length by amino_acids_per_codon to prove that the chain contains the codon for exactly 36 amino acids.
Store the result in variable polyq_peptide_length.

Display the result in the following format:

Number of amino acids in a polyglutamine with 36 repeats: XXX

5. Determine the types for the following variable:

amino_acids_per_codon

polyq_codons_length

polyq_peptide_length

and display the result for each item in the following format:

Value: XXX - Type: <class 'XXXX'>

6. Are all the variables in task #5 of the same type? Why?

DO IT YOURSELF

7. Repeat from task #4, but this time use an alternative method of division as outlined in See Table Routine mathematical
operations in Python.

Solution

Solution

Solution

glutamine_codon = 'CAG'

polyq_codons = glutamine_codon * 36

print('Polyglutamine codons with 36 repeats:', polyq_codons)

PYTHON

Polyglutamine codons with 36 repeats: CAG

OUTPUT

polyq_codons_length = len(polyq_codons)

print('Number of nucleotides in a polyglutamine with 36 repeats:', polyq_codons_length)

PYTHON

Number of nucleotides in a polyglutamine with 36 repeats: 108

OUTPUT

amino_acids_per_codon = len(glutamine_codon)

PYTHON

Solution

Solution

Solution

No, polyq_peptide_length is an instance of type float. This is because we used the normal division (/) and not �oor division (//}) to
calculate its value. The result of normal division is always presented as a �oating point number.

polyq_peptide_length = polyq_codons_length / amino_acids_per_codon

print('Number of amino acids in a polyglutamine with 36 repeats:', polyq_peptide_length)

PYTHON

Number of amino acids in a polyglutamine with 36 repeats: 36.0

OUTPUT

print('Value:', amino_acids_per_codon, '- Type:', type(amino_acids_per_codon))

print('Value:', polyq_codons_length, '- Type:', type(polyq_codons_length))

print('Value:', polyq_peptide_length, '- Type:', type(polyq_peptide_length))

PYTHON

Value: 3 - Type: <class 'int'>

Value: 108 - Type: <class 'int'>

Value: 36.0 - Type: <class 'float'>

OUTPUT

Solution

Logical Operations
An operation may involve a comparison. The result of such operations is either True or False. This is known as the Boolean or bool data
type. In reality, however, computers record True and False as 1 and 0 respectively.

Operations with Boolean results are referred to as logical operations. Testing the results of such operations is known as truth value testing.

Given the two variables a and b as follows:

a = 17

b = 5

Boolean operations may be de�ned as outlined in Table Routine logical operations in Python..

polyq_peptide_length = polyq_codons_length // amino_acids_per_codon

print('Number of amino acids in a polyglutamine with 36 repeats:', polyq_peptide_length)

print('Value:', amino_acids_per_codon, '- Type:', type(amino_acids_per_codon))

print('Value:', polyq_codons_length, '- Type:', type(polyq_codons_length))

print('Value:', polyq_peptide_length, '- Type:', type(polyq_peptide_length))

PYTHON

Number of amino acids in a polyglutamine with 36 repeats: 36

Value: 3 - Type: <class 'int'>

Value: 108 - Type: <class 'int'>

Value: 36 - Type: <class 'int'>

OUTPUT

T HE BOOLEAN DATA T YPE IS NAMED AFT ER T HE ENG LISH MAT HEMAT ICIAN AND LOG ICIAN G EORG E
BOOLE (1 8 1 5 –1 8 6 4) .

INTERESTING FACT

Routine logical operations in Python.

We know that in algebra, the �rst identity (square of a binomial) is:

now given:

a = 15

b = 4

1. Calculate

Display the results in the following format:

y1 = XX

y2 = XX

2. Determine whether or not y_1 is indeed equal to y_2. Store the result of your test in another variable called equivalence.
Display the results in the following format:

Where a = XX and b = XX:

y1 is equal to y2: [True/False]

DO IT YOURSELF

(a + b = + 2ab +)2 a2 b2

= (a + by1)2

= + 2ab +y2 a2 b2

Solution

Solution

Negation
We can also use negation in logical operations. Negation in Python is implemented using not :

Negations in Python.

a = 15

b = 4

y_1 = (a + b) ** 2

y_2 = a ** 2 + 2 * a * b + b ** 2

print('y1 =', y_1)

print('y2 =', y_2)

PYTHON

y1 = 361

y2 = 361

OUTPUT

equivalence = y_1 == y_2

print('Where a =', a, ' and b=', b)

print('y1 is equal to y2:', equivalence)

PYTHON

Where a = 15 and b= 4

y1 is equal to y2: True

OUTPUT

Using the information from previous Do it Yourself:

1. Without using not , determine whether or not y_1 is not equal to y_2. Display the result of your test and store it in another
variable called inequivalent.

2. Negate inequivalent and display the result.

Solution

Solution

Disjunctions and Conjunctions
Logical operations may be combined using conjunction with and and disjunction with or to create more complex logics:

Disjunctions and Conjunctions in Python.

DO IT YOURSELF

inequivalent = y_1 != y_2

print(inequivalent)

PYTHON

False

OUTPUT

inequivalent_negated = not inequivalent

print(inequivalent_negated)

PYTHON

True

OUTPUT

Given

a = True

b = False

c = True

Evaluate the following statements:

1. a == b

2. a == c

3. a or b

4. a and b

5. a or b and c

6. (a or b) and c

7. not a or (b and c)

8. not a or not(b and c)

9. not a and not(b and c)

10. not a and not(b or c)

Display the results in the following format:

1. [True/False]

2. [True/False]

 ...

Given that:

DO IT YOURSELF

a = True

b = False

c = True

PYTHON

Solution

Solution

Solution

Solution

print('1.', a == b)

PYTHON

1. False

OUTPUT

print('2.', a == c)

PYTHON

2. True

OUTPUT

print('3.', a or b)

PYTHON

3. True

OUTPUT

print('4.', a and b)

PYTHON

4. False

OUTPUT

Solution

Solution

Solution

Solution

print('5.', a or b and c)

PYTHON

5. True

OUTPUT

print('6.', (a or b) and c)

PYTHON

6. True

OUTPUT

print('7.', not a or (b and c))

PYTHON

7. False

OUTPUT

print('8.', not a or not(b and c))

PYTHON

8. True

OUTPUT

Solution

Solution

Complex logical operations
It may help to break down more complex operations, or use parenthesis to make them easier to both read and write:

Complex Logical Operations in Python.

Notice that in the last example, all notations are essentially the same and only vary in terms of their collective results as de�ned using
parenthesis. Always remember that in a logical statement:

print('9.', not a and not(b and c))

PYTHON

9. False

OUTPUT

print('10.', not a and not(b or c))

PYTHON

10. False

OUTPUT

The statement in parenthesis does not have precedence over the rest of the state (unlike mathematical statements). It
merely de�nes an independent part of the operation whose response is evaluated separately.

The precedence is established on a �rst come, �rst serve basis (from left to right).

Always use parenthesis in longer statements for clari�cation.

In disjunctive statements —i.e. a > 5 or b > 5, if the �rst part is True, the second part is not checked. In other words, if a is
greater than 5, the computer does not proceed to check whether or not b is greater than 5.

In conjunctive statements —i.e. a > 5 and b > 5, the statement proceeds to the seconds part if and only if the �rst part is True.
In other words, the result of a conjunctive statement is only True if and only if both a and b are greater than 5. If a is False, the
entire statement will inevitably be False.

The longer the statement, the more dif�cult it would be to understand it properly, and by extension, the more likely it would
be to cause problems.

LOGICAL STATEMENT

a, b, c = 17, 5, 2 # Alternative method to define variables.

PYTHON

Disjunction: false OR true.

a < b or b > c

PYTHON

True

OUTPUT

Disjunction: true OR true.

a > b or b > c

PYTHON

True

OUTPUT

Conjunction: true AND true.

a > b and b > c

PYTHON

True

OUTPUT

Conjunction: false and true.

a < b and b > c

PYTHON

False

OUTPUT

Disjunction and conjunction: true OR false AND true

a > b or b < c and b < a

PYTHON

True

OUTPUT

Disjunction and conjunction: false OR true AND false

a < b or b > c and b > a

PYTHON

False

OUTPUT

Disjunctions and conjunction: false OR true AND true

a < b or b > c and b < a

PYTHON

True

OUTPUT

Disjunction and negated conjunction and conjunction:

true AND NOT false AND false

a < b or not b < c and b > a

PYTHON

These are only a few examples. There are endless possibilities, try them yourself and see how they work.

To that end, you may want to use variables to split complex statements down to smaller portions:

False

OUTPUT

Disjunction and negated conjunction - similar to the

previous example: true AND NOT (false AND false)

a < b or not (b < c and b > a)

PYTHON

True

OUTPUT

SOME LOG ICAL OPERAT IONS MAY BE WRIT T EN IN DIFFERENT WAYS. HOWEVER, WE SHOU LD ALWAYS
U SE T HE NOTAT ION T HAT IS MOST COHERENT IN T HE CONT EXT OF OU R CODE. IF IN DOU BT, U SE T HE
SIMPLEST / SHORT EST NOTAT ION.

REMEMBER

age_a, age_b = 15, 35

are_positive = age_a > 0 and age_b > 0

a_is_older = are_positive and (age_a > age_b)

b_is_older = are_positive and (age_a < age_b)

a_is_teenager = are_positive and 12 < age_a < 20

b_is_teenager = are_positive and 12 < age_b < 20

a_is_teenager and b_is_older

PYTHON

True

OUTPUT

a_is_teenager and a_is_older

PYTHON

Given

a = 3

b = 13

Test the following statements and display the results:

 or

 and

 and

where “|…|” represents the absolute value, and “ ” represents the remainder for the division of by .}

Display the results in the following format:

1. [True/False]

2. [True/False]

...

False

OUTPUT

a_is_teenager and (b_is_teenager or b_is_older)

PYTHON

True

OUTPUT

DO IT YOURSELF

< ba2

3 − < ba3

|25 − | > ba2

25 mod > ba2

25 mod > ba2 25 mod b < a

25 mod < ba2 25 mod b > a

12
a a × 4 < b

n mod m n m

Solution

Solution

Solution

Solution

#Given that:

a = 3

b = 13

print('1.', a**2 < b)

PYTHON

1. True

OUTPUT

print('2.', (3 - a**3) < b)

PYTHON

2. True

OUTPUT

print('3.', abs(25 - a**2) > b)

PYTHON

3. True

OUTPUT

print('4.', (25 % a**2) > b)

PYTHON

4. False

OUTPUT

Solution

Solution

Solution

Exercises

print('5.', (25 % a**2) > b or (25 % b) < a)

PYTHON

5. False

OUTPUT

print('6.', (25 % a**2) < b and (25 % b) > a)

PYTHON

6. True

OUTPUT

print('7.', (12 / a) and (a * 4) < b)

PYTHON

7. True

OUTPUT

1. Write and execute a Python script to display your own name as an output in the terminal.

2. Write and execute a Python script that:

Displays the text Please press enter to continue..., and waits for the user to press enter.

Once the user pressed enter, the program should display Welcome to my programme! before it terminates.

3. We have an enzyme whose reaction velocity is at the substrate concentration of
. Work out the maximum reaction velocity or for this enzyme using the Michaelis-Menten

equation:

END OF CHAPTER EXERCISES

v = 50 mol ⋅ ⋅L−1 s−1

[S] = = 2.5 mol ⋅Km L−1 Vmax

v =
[S]Vmax

+ [S]Km

Solution

Q1

Q2

Blocking the execution until the user

presses enter:

input('Please press enter to continue...')

print('Welcome to my programme!')

Q3

name = 'Gerold Baier'

Displaying the author's name:

print(name)

PYTHON

Gerold Baier

OUTPUT

v = 50 #mol/L/s

k_m = S = 2.5 #mol/L

Rearranged the equation to

solve for v_max:

v_max = (v * (k_m + S)) / S

Unit: mol/L/s

print('Vmax =', v_max, '[mol / (l * sec)]')

PYTHON

Vmax = 100.0 [mol / (l * sec)]

OUTPUT

Two key functions for I/O operations are print() and input()

Three most commonly used variables such as int, float, and str.

Variable scope can be local or global depending where they are being used.

Mathematical operations follow conventional rules of precedence

Logical operations provide results in Boolean (True or False)

Content from Conditional Statements

Last updated on 2024-02-27 | Edit this page

Download Chapter notebook (ipynb)

KEY POINTS

OVERVIEW

Questions

What are conditional statements?

How conditional statements are used to make decisions?

Why indentation is so important in Python?

Is there any hierarchical importance of conditional statements?

Objectives

Understand the logic behind using conditional statements.

Practice conditional statements.

Learning structuring code using correct indentation.

Understanding the hierarchy of conditional statements.

http://127.0.0.1:7966/03-conditional_statements.html
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/03-conditional_statements.Rmd
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/03-conditional_statements.Rmd
http://127.0.0.1:7966/03-conditional_statements.ipynb

Conditional Statements in PythonConditional Statements in Python

This chapter assumes that you are familiar with the following concepts in Python 3:

I/O Operations

Variables And Types

Mathematical Operation

When we construct logical expressions, we almost always do so because we need to test something. The de�nition of a process through
which we test our logical expressions and provide directives on how to proceed is known in computer science as a conditional statement.
Conditional statements are a feature of programming languages. This means that although their de�nitions and grammar may vary slightly
from one programming language to another, their principles are almost universally identical.

Being a high-level programming language, de�ning conditional statements is very easy in Python. Before we start, however, let us brie�y
review the way conditional statements actually work. To help us with that, we use �owchart diagrams.

CHECKLIST

T HE T ERM CONDIT IONAL STAT EMENT S IS OFT EN U SED IN RELAT ION TO IMPERAT IVE PROG RAMMING
LANG U AG ES. IN FU NCT IONAL PROG RAMMING , HOWEVER, IT IS MORE COMMON TO REFER TO T HEM AS
CONDIT IONAL EXPRESSIONS OR CONDIT IONAL CONST RU CT S. PYT HON SU PPORT S BOT H IMPERAT IVE
AND FU NCT IONAL PROG RAMMING .

REMEMBER

https://www.youtube.com/watch?v=oxB_XFfC4VY
http://127.0.0.1:7966/02-input_output.html#operations
http://127.0.0.1:7966/02-input_output.html#varTypes
http://127.0.0.1:7966/02-input_output.html#math_ops
https://en.wikipedia.org/wiki/Flowchart

We use algorithms in our life every day without realising it.

Suppose we enter a room poorly lit room to work. The �rst things that we notice is that the room is insuf�ciently lit. We check to see
whether or not the light is on; if not, we �nd the switch to turn on the light. Likewise, if the light is on, we go ahead and turn on the
desk lamp before we proceed with our business.

Now that we know what procedures are involved, we can draw a �owchart of the process:

Flowchart

Programming is not merely a hard skill. It is the door to a different way of thinking that enables one to break complex procedures
down to simple, stepwise components and tasks. Flowcharts help us perceive processes as computers do — that is, one task or
component at a time. As we progress in programming, our brains develop the ability to think in a procedural way. This is called
algorithmic thinking, and is one of the most important soft-skills that a programmer can develop.

EXAMPLE: ALGORITHMS IN DAILY L IFE

T HIS SCENARIO MAY BE PERCEIVED AS A SET OF PROCESSES. T HESE PROCESSES INCLU DE A SET
OF PROCEDU RES T HAT MAY BE OU T L INED AS FOLLOWS:

1. Action : ENTER THE ROOM.

2. Input : DETERMINE THAT THE ROOM IS INSUFFICIENTLY LIT.

3 . Condition : IS THE LIGHT SWITCHED ON?

NO: Action : TURN ON THE LIGHTS,

YES: Action : TURN ON THE DESK LAMP.

4. Action : PROCEED WITH OUR BUSINESS.

PROCESSES OF ALGORITHMS

There are international competitions and comprehensive courses dedicated to this concept. At the end of the day, however, one
can only acquire a skill through practice.

Exercise is provided to give you an idea of the type of problems that may be tackled in a procedural way.

On a distant planet, the dominant carnivore, the zab, is nearing extinction. The number of zabs born in any year is one more than
the (positive) difference between the number born in the previous year and the number born in the year before that.

Examples

If 7 zabs were born last year and 5 the year before, 3 would be born this year.

If 7 zabs were born last year and 10 the year before, 4 would be born this year.

If 2 zabs were born in the year 2000 and 9 zabs were born in 2001. What is the �rst year after 2000 when just 1 zab will be born?

a. 2009

b. 2011

c. 2013

d. 2015

e. 2017

Credit: This question is taken from the 2011 Computational and Algorithmic Thinking (CAT) Competition held by the Australian
Mathematics Trust.}

IF YOU ARE KEEN TO LEARN MORE ABOU T ALG ORIT HMS AND ALG ORIT HMIC T HINKING , OR JU ST WANT TO
T RY OU T SOME OF T HE PROBLEMS, YOU MAY WANT TO LOOK INTO SOME OF T HE PAST COMPET IT ION
PAPERS ON COMPU TAT IONAL AND ALG ORIT HMIC T HINKING (CAT) PU BL ISHED BY T HE AU ST RALIAN
MAT HEMAT ICS T RU ST.

ADVANCED TOPIC

DO IT YOURSELF

http://www.amt.edu.au/informatics/cat/

Solution

To obtain the answer, we may write an algorithm in a pseudo-code format as follows:

 let a_total = 2

 let b_total = 9

 let current_total = absolute(a_total - b_total) + 1

 let a_total = b_total

 let b_total = current_total

 let current_year = 2002

 do {

 current_total = absolute(a_total - b_total) + 1

 a_total = b_total

 b_total = current_total

 current_year = current_year + 1

} while current_total > 1

display current_year

Given:

 year = 2000; a_total = 2

 year = 2001; b_total= 9

the above process with repeat the section written in curly brackets for as long

as current_total > 1:

 current_year: 2002; a_total = 2, b_total = 9, current_total = 8

Is current_total > 1 ? Yes:

 current_year: 2003; a_total = 9, b_total = 8; current_total = 2

Is current_total > 1 ? Yes:

 current_year: 2004; a_total = 8; b_total = 2; current_total = 7

Is current_total > 1 ? Yes:

 current_year: 2005; a_total = 2; b_total = 7; current_total = 6

Is current_total > 1 ? Yes:

 current_year: 2006; a_total = 7; b_total = 6; current_total = 2

Is current_total > 1 ? Yes:

 current_year: 2007; a_total = 6; b_total = 2; current_total = 5

Is current_total > 1 ? Yes:

 current_year: 2008; a_total = 2; b_total = 5; current_total = 4

Is current_total > 1 ? Yes:

 current_year: 2009; a_total = 5; b_total = 4; current_total = 2

Is current_total > 1 ? Yes:

 current_year: 2010; a_total = 4; b_total = 2; current_total = 3

Is current_total > 1 ? Yes:

 current_year: 2011; a_total = 2; b_total = 3; current_total = 2

Is current_total > 1 ? Yes:

 current_year: 2012; a_total = 3; b_total = 2; current_total = 2

Is current_total > 1 ? Yes:

 current_year: 2013; a_total = 2; b_total = 2; current_total = 1

Is current_total > 1 ? No:

The correct answer is c) 2013.

If this algorithm/pseudo-code is translated to Python language, it will look like this:

a_total = 2

b_total = 9

current_year = 2002

current_total = abs(a_total - b_total) + 1

a_total = b_total

b_total = current_total

while (current_total > 1):

 current_total = abs(a_total - b_total) + 1

 a_total = b_total

 b_total = current_total

 current_year = current_year + 1

print(current_year)

PYTHON

Conditions in Python
if statments

To implement conditional statements in Python, we use 3 syntaxes:

To initiate the statement, we use the syntax if followed by the condition and a colon;

To create an alternative condition after the �rst condition has been de�ned, we use the syntax elif followed by the new condition
and a colon;

2013

OUTPUT

T HERE IS ALMOST ALWAYS MORE T HAN ONE ANSWER TO ANY ALG ORIT HMIC PROBLEM; SOME ANSWER
MIG HT EVEN BE MORE EFFICIENT T HAN OT HER. T HE LESS REPET IT ION T HERE IS , T HE BET T ER MORE
EFFICIENT AN ALG ORIT HM IS CONSIDERED TO BE.

REMEMBER

students_present = 15

Conditional statement:

if students_present > 10: # Initiation

 # Directive (must be indented).

 print('More than 10 students are present.')

PYTHON

More than 10 students are present.

OUTPUT

https://docs.python.org/3/tutorial/controlflow.html#if-statements

To introduce a default — i.e. where none of the above are True, we use the syntax else .

Indentation Rule
PEP-8: Indentation
Always use 4 spaces for indentation. Indentations are how the Python interpreter determines the code hierarchy. A consistent hierarchy is
therefore essential for the interpreter to parse and execute our code.

students_present = 5

Conditional statement:

if students_present > 10: # Initiation

 # Directive (must be indented).

 print('More than 10 students are present.')

elif 0 < students_present < 10:

 print('Less than 10 students are present.')

PYTHON

Less than 10 students are present.

OUTPUT

students_present = 0

Conditional statement:

if students_present > 10: # Initiation

 # Directive (must be indented).

 print('More than 10 students are present.')

elif 0 < students_present < 10: # Alternative condition

 # Alternative directive (must be indented).

 print('Less than 10 students are present.')

else: # Default (none of the conditions are met).

 # Directive (must be indented).

 print('There is no one!')

PYTHON

There is no one!

OUTPUT

WE CAN U SE DISJU NCT IONS OR CONJU NCT IONS, AS DISCU SSED IN TOPIC DISJU NCT IONS AND
CONJU NCT IONS, TO T EST FOR MORE T HAN ONE CONDIT ION AT A T IME.

REMEMBER

https://www.python.org/dev/peps/pep-0008/#indentation
http://127.0.0.1:7966/02-input_output.html#disjun
http://127.0.0.1:7966/02-input_output.html#disjun

The indented part of the code is known as a block. A block represents a part of the code that always “belongs” to (is the child process of)
the �rst unindented (dedented) line that precedes it. In other words, the action(s) within a conditional statement (actions that are subject to
a speci�c condition) must always be indented:

It is not a good practice to have too many nested indentation. This would make the code more dif�cult to read. A rule of thumb is that you
should not need more than 4 nested indentations in your code. If you do, you should reconsider the code structure to somehow simplify the
process.

On that note, where possible, it is better to use conjunctions and disjunctions, or implement alternative conditions using elif instead of
creating nested conditional statements. We can therefore restructure the previous example in a better, more coherent way as follows:

value = 10

Statement A:

if value > 0:

 # First dedented line before the block.

 # This is a block, and it belongs to the

 # preceding "if" (Statement A):

 print('The value is positive.')

 # We can have nested blocks too.

 # Statement B:

 if value > 9:

 # First dedented line before the block.

 # This is another block (nested).

 # This block belongs to the preceding "if" (Statement B).

 print('The value is not a single digit.')

 # Introducing a default behaviour for Statement B:

 else:

 # This block belongs to the preceding "else".

 print('The value is a single digit.')

Introducing an alternative condition for Statement A:

elif value < 0:

This block belongs to the preceding "elif".

 print('The value is negative.')

Introducing a default behaviour for Statement A:

else:

This block belongs to the preceding "else".

 print('The value is zero.')

PYTHON

The value is positive.

The value is not a single digit.

OUTPUT

It is customary and also best practice to use 4 spaces for indentation in Python. It is also paramount that all indentations throughout the
code are consistent; that is, you may not use 4 spaces here and 3 spaces somewhere else in your code. Doing so will cause an
IndentationError to be raised. It is recommended to not use Tab to indent your code; it is regarded as a bad practice in Python.

value = 10

if value > 0:

 print('The value is: ') # Indented with 4 spaces.

 print('POSITIVE.') # Indented with 3 spaces.

File <STDIN>, line 5

 print('POSITIVE.') # Indented with 3 spaces.

 ^

IndentationError: unindent does not match any outer indentation level

value = 10

if value > 9:

 print('The value is positive.')

 print('The value is not a single digit.')

elif value > 0:

 print('The value is positive.')

 print('The value is a single digit.')

elif value < 0:

 print('The value is negative.')

else:

 print('The value is zero.')

PYTHON

The value is positive.

The value is not a single digit.

OUTPUT

Tab INDENTAT IONS REPRESENT DIFFERENT NU MBER OF SPACES ON DIFFERENT COMPU T ERS AND
OPERAT ING SYST EMS. IT IS T HEREFORE MORE T HAN L IKELY T HAT T HEY WILL LEAD TO IndentationError .
ADDIT IONALLY, PYT HON 3 DISALLOWS T HE MIXING OF TAB AND SPACE INDENTAT IONS. SOME PYT HON
IDES SU CH AS PYCHARM AU TOMAT ICALLY CONVERT Tab INDENTAT IONS TO 4 SPACES. SOME OT HER IDES
(E.G . JU PYT ER) T YPICALLY HIG HLIG HT Tab INDENTAT IONS TO EXPL ICIT LY DIST ING U ISH T HEM AND
T HEREBY NOT IFY T HE PROG RAMMER OF T HEIR EXIST ENCE. HOWEVER, MORE OFT EN T HAN NOT, IDES
AND T EXT EDITORS T END TO IG NORE T HIS, WHICH AMOU NT S TO INCONSIST ENCIES AND SU BSEQU ENT LY
IndentationError . T HIS IS A VERY COMMON DIFFICU LT Y T HAT NEW PYT HON PROG RAMMERS FACE, AND
CAN BE VERY CONFU SING IF NOT HANDLED CORRECT LY.

CALLOUT

In previous chapter, Do it Yourself, we explored the implication of CAG repeats in Huntington’s disease. We also created a
polynucleotide chain containing 36 repetition of the CAG codons.

Write a conditional statement that tests the length of a polyQ tract to determine the classi�cation and the disease status based on
the following Table:

Using the technique you used in Do it Yourself, create 5 polyQ tracts containing 26, 15, 39, 32, 36, and 54 codons. Use these
polynucleotide chains to test your conditional statement.

Display the result for each chain in the following format:

PolyQ chain with XXX number of CAG codons:

Status: XXX

Classification: XXX

Hint: The length of a polyQ tract represents the number of nucleotides, not the number of CAG codons. See task 4 of Do it Yourself for
additional information.

DO IT YOURSELF

http://127.0.0.1:7966/02-input_output.html#diy:mathOpts:Huntington
http://127.0.0.1:7966/02-input_output.html#diy:mathOpts:Huntington
http://127.0.0.1:7966/02-input_output.html#diy:mathOpts:Huntington

Solution

#Constructing the codons:

glutamine_codon = 'CAG'

polyq_codons = glutamine_codon * 26

#Determining the length of our codon:

signle_codon = len('CAG')

len_polyq = len(polyq_codons)

polyq = len_polyq / signle_codon

#Constructing the conditional statement:

NORMAL = 26

INTERMEDIATE = 35

REDUCED_PENETRANCE = 40

classification = str()

status = str()

if polyq < NORMAL:

 classification, status = 'Normal', 'Unaffected'

elif polyq <= INTERMEDIATE:

 classification, status = 'Intermediate', 'Unaffected'

elif polyq <= REDUCED_PENETRANCE:

 classification, status = 'Reduced Penetrance', '+/- Affected'

else:

 classification, status = 'Full Penetrance', 'Affected'

#Displaying the results:

print('PolyQ chain with', polyq, 'number of CAG codons:')

print('Classification:', classification)

print('Status:', status)

#Repeat this with 15, 39, 32, 36, and 54 codons.

PYTHON

PolyQ chain with 26.0 number of CAG codons:

Classification: Intermediate

Status: Unaffected

OUTPUT

Hierarchy of conditional statements
The hierarchy of conditional statement is always the same. We start the statement with an if syntax (initiation). This is the only essential
part to implement a conditional statement. Other parts include the elif and the else syntaxes. These are the non-essential part, and
we implement these as and when needed. It is, however, important that we adhere to the correct order when we implement these:

Always start with the initiation syntax if .
Where needed, implement as many alternative conditions as necessary elif .
Where needed, implement a default behaviour using else }.

In an if...elif...else hierarchy, once one condition in the hierarchy is True, all subsequent conditions in that group are skipped and would
no longer be checked.

In the following example, the �rst condition is True, therefore its corresponding block is executed and the rest of this conditional statement is
skipped:

TATA_BOX = 'TATA'

promoter_region = 'GTAACTGTGGTATAATCGT'

if TATA_BOX in promoter_region:

 # This condition is "True", so this

 # and only this block is executed.

 print('There is a "TATA" box in this promoter region.')

else:

 # The last condition was "False", so this

 # block is skipped.

 print('There is no "TATA" box in this promoter region.')

PYTHON

There is a "TATA" box in this promoter region.

OUTPUT

WE ALREADY KNOW FROM SU BSECT ION LOG ICAL OPERAT IONS T HAT T HE VALU E OF A BOOLEAN (bool)
VARIABLE IS EIT HER False OR True .

WE HAVE ALSO LEARNED T HAT IN CONDIT IONAL STAT EMENT S, WE U SE DOU BLE EQU ALS} OR ... == ...
TO T EST FOR EQU IVALENCE. SO NAT U RALLY, ONE COU LD T EST FOR T HE T RU T H VALU E OF A bool
VARIABLES AS FOLLOWS:

T HIS WORKS, AND IT LOOKS SIMPLE ENOU G H. HOWEVER, T HIS IS T HE WRO NG APPRO ACH FOR T EST ING
T HE VALU E OF bool VARIABLES AND SHOU LD NOT BE U SED. WHILST T HE ANSWER IS CORRECT IN T HE
ABOVE EXAMPLE, U SING DOU BLE EQU ALS FOR T EST ING BOOLEAN VARIABLES CAN SOMET IMES
PRODU CE INCORRECT RESU LT S.

T HE CORRECT WAY TO T EST T HE T RU T H VALU E OF A BOOLEAN VARIABLE IS BY U SING is AS FOLLOWS:

AND T HE NEG AT IVE T EST IS :

REMEMBER

variable = False

if variable == False:

 print('The variable is False.')

PYTHON

The variable is False.

OUTPUT

variable = False

if variable is False:

 print('The variable is False.')

PYTHON

The variable is False.

OUTPUT

variable = True

if variable is not False:

 print('The variable is True.')

PYTHON

The variable is True.

OUTPUT

http://127.0.0.1:7966/02-input_output.html#subsec:logicalOperatons

Consequently, we can now write the example algorithm (room and light) as follows:

There are a few very popular shorthands in Python that you should be familiar with when writing or reading conditional statements:

In an if statement, Python expects the result of the condition to be True. As result of that, we can simplify the above example as follows:

Sometime, however, we might need to test for a False outcome. To do so, we can write a negated conditions as described in subsection
Negation instead:

IN SHORT; AS FAR AS BOOLEAN VARIABLES ARE CONCERNED, WE SHOU LD ALWAYS U SE is OR is not

TO T EST FOR T HEIR T RU T H VALU E IN A CONDIT IONAL STAT EMENT.

light_status = False

if light_status is True:

 action = 'The light is on; you may want to turn off the desk light.'

else:

 action = 'The light is off... turn it on.'

print(action)

PYTHON

The light is off... turn it on.

OUTPUT

light_status = False

if light_status:

 action = 'The light is on; you may want to turn off the desk light.'

else:

 action = 'The light is off... turn it on.'

print(action)

PYTHON

The light is off... turn it on.

OUTPUT

http://127.0.0.1:7966/02-input_output.html#sec:logicalStatements:Negation

Note that we have changed the order of the condition

and added a "not" before "light_status"

if not light_status:

 action = 'The light is off... turn it on.'

else:

 action = 'The light is on; you may want to turn off the desk light.'

print(action)

PYTHON

The light is off... turn it on.

OUTPUT

Suppose we want to determine the classi�cation of the �nal mark for a student.

The classi�cation protocol is as follows:

Above 70%: First class.

Between 60% and 70%: Second class (upper division).

Between 50% and 60%: Second class (lower division).

Between 40% and 50%: Pass.

Below 40%: Fail.

Exercises

EXAMPLE: A FAMILIAR SCENARIO

mark = 63

Thresholds

first = 70

second_upper = 60

second_lower = 50

passed = 40 # "pass" is a syntax in Python.

if mark >= first:

 classification = 'First Class'

elif mark >= second_upper:

 classification = 'Second Class (upper division)'

elif mark >= second_lower:

 classification = 'Second Class (lower division)'

elif mark >= passed:

 classification = 'Pass'

else:

 classification = 'Fail'

print('The student obtained a', classification, 'in their studies.')

PYTHON

The student obtained a Second Class (upper division) in their studies.

OUTPUT

1. Protein Kinases have a phosphorylation site and a consensus sequence has been determined for these sites (Rust and
Thompson, 2012). All the proteins incorporate either a Serine or a Threonine residue that gets phosphorylated. Naturally, the
consensus sequence for each protein varies slightly from that of other proteins.

When studying a polypeptide in the lab, a colleague realised that it has a phosphorylated Serine. So they tried to sequence the
polypeptide, and managed to obtain a sequence for the protein:

kinase_peptide = (

"PVWNETFVFNLKPGDVERRLSVEVWDWDRTSRNDFMGAMSFGVSELLK"

"APVDGWYKLLNQEEGEYYNVPVADADNCSLLQKFEACNYPLELYERVR"

"MGPSSSPIPSPSPSPTDPKRCFFGASPGRLHISDFSFLMRRRKGSFGK"

"VMLAERRGSDELYAIKILKKDVIVQDDDVDCTLVEKRVLALGGRGPGG"

"RPHFLTQLHSTFQTPDRLYFVMEYVTGGDLMYHIQQLGKFKEPHAAFY"

"AAEIAIGLFFLHNQGIIYRDLKLDNVMLDAEGHIKITDFGMCKENVF"

)

Desperate to �nd a match, and knowing that we are good at doing computer stuff, they asked us if we can help them identify
what protein kinase does the sequence correspond to?

So we extract the consensus sequence of 3 protein kinases from the paper:

PKC- : either RKGSFRR or RRRSFRR

PKC- : either RRRKGSF or RRRKKSF

DMPK-E: one of KKRRRSL, RKRRRSL, KKRRRSV, or RKRRRSV.

Now all we need is to write a conditional statement in Python to identify which of the above protein kinases, if any, does our
sequence correspond to. That is, which one of the consensus peptides exists in our mystery sequence?

If there is a match, our programme should display the name of the corresponding protein kinase; otherwise, it should say No
matches found for good measures.

END OF CHAPTER EXERCISES

η

γ

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176959/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176959/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176959/

Solution

Python used if, elif and else as conditional statements.

In Python, there is an indentation rule of 4 spaces.

The hierarchy of conditional statement is always the same.

Content from Introduction to Arrays

Last updated on 2024-02-27 | Edit this page

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

peptide = (

 "PVWNETFVFNLKPGDVERRLSVEVWDWDRTSRNDFMGAMSFGVSELLK"

 "APVDGWYKLLNQEEGEYYNVPVADADNCSLLQKFEACNYPLELYERVR"

 "MGPSSSPIPSPSPSPTDPKRCFFGASPGRLHISDFSFLMRRRKGSFGK"

 "VMLAERRGSDELYAIKILKKDVIVQDDDVDCTLVEKRVLALGGRGPGG"

 "RPHFLTQLHSTFQTPDRLYFVMEYVTGGDLMYHIQQLGKFKEPHAAFY"

 "AAEIAIGLFFLHNQGIIYRDLKLDNVMLDAEGHIKITDFGMCKENVF"

)

if "RKGSFRR" in peptide or "RRRSFRR" in peptide:

 print('PKC-eta')

elif "RRRKGSF" in peptide or "RRRKKSF" in peptide:

 print('PKC-gamma')

elif ("KKRRRSL" in peptide or "RKRRRSL" in peptide or

 "KKRRRSV" in peptide or "RKRRRSV" in peptide):

 print('DMPK-E')

else:

 print('No matches found.')

PYTHON

PKC-gamma

OUTPUT

KEY POINTS

OVERVIEW

Questions

What are different types of arrays?

http://127.0.0.1:7966/04-arrays.html
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/04-arrays.Rmd
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/04-arrays.Rmd
http://127.0.0.1:7966/04-arrays.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1

Arrays: Python ListsArrays: Python Lists

Arrays: Nested Arrays in PythonArrays: Nested Arrays in Python

How is data stored and retrieved from an array

Why nested arrays?

What are tuples?

Objectives

Understanding difference between lists and tuples.

Building concepts of operations on arrays.

knowing storing multidimensional data.

Understanding mutability and immutability.

https://www.youtube.com/watch?v=RlhGPZv8fZI
https://www.youtube.com/watch?v=KiMQiN4CN8s

Arrays: Numpy Arrays in PythonArrays: Numpy Arrays in Python

Variables and Types

Logical Operations

Conditional Statements

So far, we have been using variables to store individual values. In some circumstances, we may need to access multiple values to perform
operations. In such occasions, de�ning a variable for every single value can become very tedious. To address this, we use arrays.

Arrays are variables that hold any number of values. Python provides 3 types of built-in arrays: list, tuple, and set. There are a several
common features amongst all arrays in Python; however, each type of array enjoys its own range of unique features that facilitate speci�c
operations.

Lists
Resource for Lists

Lists are the most frequently used type of arrays in Python. It is therefore important to understand how they work, and that how can we use
them and features they offer to our advantage.

The easiest way to imagine how a list works is to think of it as a table that can have any number of rows. This is akin to a spreadsheet
with one column. For instance, suppose we have a table with 4 rows in a spreadsheet application as follows:

PREREQUISITE

EACH IT EM INSIDE AN ARRAY MAY BE REFERRED TO AS A MEMBER OR IT EM OF T HAT ARRAY.

REMEMBER

https://www.youtube.com/watch?v=id72qTBmCEY
http://127.0.0.1:7966/02-input_output.html#varTypes
http://127.0.0.1:7966/02-input_output.html#subsec:logicalOperatons
http://127.0.0.1:7966/03-conditional_statements.html
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

The number of rows in an array determine the length. The above table has 4 rows; therefore it is said to have a length of 4.

Implementation

TO IMPLEMENT A list IN PYT HON, WE PLACE T HE VALU ES SEPARAT ED BY COMMAS INSIDE SQU ARE
BRACKET S [1 , 2 , 3 , …] .

REMEMBER

table = [5, 21, 5, -1]

print(table)

PYTHON

[5, 21, 5, -1]

OUTPUT

print(type(table))

PYTHON

<class 'list'>

OUTPUT

Implement a list array called �bonacci, whose members represent the �rst 8 numbers of the Fibonacci sequence as follows:

FIBONACCI NUMBERS (FIRST 8)

1 1 2 3 5 8 13 21

Solution

Indexing
In arrays, an index is an integer number that corresponds to a speci�c item.

You can think of an index as a unique reference or a key that corresponds to a speci�c row in a table. We don’t always write the row
number when we create a table. However, we always know that the 3 row of a table means that we start from the �rst row (row #1),
count 3 rows down and there we �nd the 3 row.

The only difference in Python is that we don’t take the �rst row as row #1; instead, we consider it to be row #0. As a consequence of
starting from #0, we count rows in our table down to row #2 instead of #3 to �nd the 3 row. So our table may in essence be visualised as
follows:

DO IT YOURSELF

fibonacci = [1, 1, 2, 3, 5, 8, 13, 21]

PYTHON

rd

rd

rd

https://en.wikipedia.org/wiki/Fibonacci_number

With that in mind, we can use the index for each value to retrieve it from a list.

Given a list of 4 members stored in a variable called table:

table = [5, 21, 5, -1]

we can visualise the referencing protocol in Python as follows:

As demonstrated in the diagram; to retrieve a member of an array through its index, we write the name of the variable immediately
followed by the index value inside a pair of square brackets — e.g. table[2].

PY T HON U SES A Z ERO-BASED INDEXING SYST EM. T HIS MEANS T HAT T HE FIRST ROW OF AN ARRAY,
REG ARDLESS OF IT S T YPE, IS ALWAYS # 0 .

REMEMBER

print(table[2])

PYTHON

Retrieve and display the 5 Fibonacci number from the list you created in previous DIY.

Solution

It is sometimes more convenient to index an array backwards — that is, to reference the members from the bottom of the array. This is
called negative indexing and is particularly useful when we are dealing with very lengthy arrays. The indexing system in Python support
both positive and negative indexing systems.

The table above therefore may also be represented as follows:

5

OUTPUT

print(table[0])

PYTHON

5

OUTPUT

item = table[3]

print(item)

PYTHON

-1

OUTPUT

DO IT YOURSELF

th

print(fibonacci[4])

PYTHON

5

OUTPUT

If the index is a negative number, the indices are counted from the end of the list. We can implement negative indices the same way we do
positive ones:

U NL IKE T HE NORMAL INDEXING SYST EM, WHICH START S FROM # 0 , NEG AT IVE INDEXES START FROM # -1
SO T HAT IT WILL ALWAYS BE CLEAR WHICH INDEXING SYST EM IS BEING U SED.

REMEMBER

print(table[-1])

PYTHON

-1

OUTPUT

print(table[-2])

PYTHON

We know that in table, index #-3 refers the same value as index #1. So let us go ahead and test this:

If the index requested is larger than the length of the list minus one, an IndexError will be raised:

Retrieve and display the last Fibonacci number from the list you created in DIY.

5

OUTPUT

print(table[-3])

PYTHON

21

OUTPUT

equivalence = table[-3] == table[1]

print(equivalence)

PYTHON

True

OUTPUT

print(table[4])

PYTHON

Error: IndexError: list index out of range

ERROR

T HE VALU ES STORED IN A list MAY BE REFERRED TO AS T HE M E M BE RS OF T HAT list .

REMEMBER

DO IT YOURSELF

Solution

Slicing
We may retrieve more than one value from a list at a time, as long as the values are in consecutive rows. This process is known as , and
may be visualised as follows:

print(fibonacci[-1])

PYTHON

21

OUTPUT

Given a list representing the above table:

table = [5, 21, 5, -1]

we may retrieve a slice of table as follows:

print(table[0:2])

If the �rst index of a slice is #0, the slice may also be written as:

Negative slicing is also possible:

PY T HON IS A NO N-I NCLUSI V E LANG U AG E. T HIS MEANS T HAT IN TABLE[A : B] , A SL ICE INCLU DES ALL T HE
VALU ES FROM, AND INCLU DING INDEX A RIG HT DOWN TO, BU T EXCLU DING , INDEX B .

REMEMBER

my_slice = table[1:3]

print(my_slice)

PYTHON

[21, 5]

OUTPUT

print(table[:2])

PYTHON

[5, 21]

OUTPUT

Retrieves every item from the first member down

to, but excluding the last one:

print(table[:-1])

PYTHON

If the second index of a slice represents the last index of a list, it be written as:

We may store indices and slices in variables:

The slice() function may also be used to create a slice variable:

[5, 21, 5]

OUTPUT

print(table[1:-2])

PYTHON

[21]

OUTPUT

print(table[2:])

PYTHON

[5, -1]

OUTPUT

print(table[-3:])

PYTHON

[21, 5, -1]

OUTPUT

start, end = 1, 3

new_table = table[start:end]

print(new_table)

PYTHON

[21, 5]

OUTPUT

Retrieve and display a slice of Fibonacci numbers from the list you created in DIY that includes all the members from the 2nd
number onwards — i.e. the slice must not include the �rst value in the list.

Solution

From value to index
Given a list entitled table as:

we can also �nd out the index of a speci�c value. To do so, we use the .index() method:

my_slice = slice(1, 3)

print(table[my_slice])

PYTHON

[21, 5]

OUTPUT

DO IT YOURSELF

print(fibonacci[1:])

PYTHON

[1, 2, 3, 5, 8, 13, 21]

OUTPUT

M E THO DS ARE FEAT U RES OF OBJECT-ORIENT ED PROG RAMMING (OOP), A PROG RAMMING PARADIG M
T HAT WE DO NOT DISCU SS IN T HE CONT EXT OF T HIS COU RSE. YOU CAN T HINK OF A MET HOD AS A
FU NCT ION T HAT IS ASSOCIAT ED WIT H A SPECIFIC T YPE. T HE JOB OF A MET HOD IS TO PROVIDE A
CERTAIN FU NCT IONALIT Y U NIQU E TO T HE T YPE IT IS ASSOCIAT ED WIT H. IN T HIS CASE, .index() IS A
MET HOD OF T YPE list T HAT G IVEN A VALU E, F INDS AND PRODU CES IT S INDEX FROM T HE list .

NOTE

table = [5, 21, 5, -1]

PYTHON

https://en.wikipedia.org/wiki/Object-oriented_programming

If a value is repeated more than once in the list, the index corresponding to the �rst instance of that value is returned:

If a value does not exist in the list, using .index() will raise a ValueError:

print(table.index(21))

PYTHON

1

OUTPUT

last_item = table.index(-1)

print(last_item)

PYTHON

3

OUTPUT

print(table.index(5))

PYTHON

0

OUTPUT

print(table.index(9))

PYTHON

Error: ValueError: 9 is not in list

ERROR

Find and display the index of these values from the list of Fibonacci numbers that you created in DIY:

1

5

21

Solution

Mutability
Arrays of type list are modi�able. That is, we can add new values, change the existing ones, or remove them from the array all together.
Variable types that allow their contents to be modi�ed are referred to as mutable types in programming.

Addition of new members
Given a list called table as:

We can add new values to table using .append() :

DO IT YOURSELF

print(fibonacci.index(1))

print(fibonacci.index(5))

print(fibonacci.index(21))

PYTHON

0

4

7

OUTPUT

table.append(29)

print(table)

PYTHON

[5, 21, 5, -1, 29]

OUTPUT

Sometimes, it may be necessary to insert a value at a speci�c index in a list. To do so, we may use .insert() , which takes two input
arguments; the �rst representing the index, and the second the value to be inserted:

Given �bonacci the list representing the �rst 8 numbers in the Fibonacci sequence that you created in DIY:

1. The 10 number in the Fibonacci sequence is 55. Add this value to �bonacci.

2. Now that you have added 55 to the list, it no longer provides a correct representation of the Fibonacci sequence. Alter
�bonacci and insert the missing number such that your it correctly represents the �rst 10 numbers in the Fibonacci sequence,
as follows:

FIBONACCI NUMBERS (FIRST 8)

1 1 2 3 5 8 13 21 34 55

Solution

table.append('a text')

print(table)

PYTHON

[5, 21, 5, -1, 29, 'a text']

OUTPUT

table.insert(3, 56)

print(table)

PYTHON

[5, 21, 5, 56, -1, 29, 'a text']

OUTPUT

DO IT YOURSELF

th

fibonacci.append(55)

PYTHON

Solution

Modification of members
Given a list as:

We can also modify the exiting value or values inside a list. This process is sometimes referred to as item assignment:

It is also possible to perform item assignment over a slice containing any number of values. Note that when modifying a slice, the
replacement values must be the same length as the slice we are trying to replace:

fibonacci.insert(8, 34)

PYTHON

table = [5, 21, 5, 56, -1, 29, 'a text']

PYTHON

Changing the value of the 2nd member.

table[1] = 174

print(table)

PYTHON

[5, 174, 5, 56, -1, 29, 'a text']

OUTPUT

table[-4] = 19

print(table)

PYTHON

[5, 174, 5, 19, -1, 29, 'a text']

OUTPUT

Given a list containing the �rst 10 prime numbers as:

primes = [2, 3, 5, 11, 7, 13, 17, 19, 23, 29]

However, values 11 and 7 have been misplaced in the sequence. Correct the order by replacing the slice of primes that represents
[11, 7] with [7, 11].

print('Before:', table)

replacement = [-38, 0]

print('Replacement length:', len(replacement))

print('Replacement length:', len(table[2:4]))

The replacement process:

table[2:4] = replacement

print('After:', table)

PYTHON

Before: [5, 174, 5, 19, -1, 29, 'a text']

Replacement length: 2

Replacement length: 2

After: [5, 174, -38, 0, -1, 29, 'a text']

OUTPUT

Using the existing value to determine the new value:

table[2] = table[2] + 50

print(table)

PYTHON

[5, 174, 12, 0, -1, 29, 'a text']

OUTPUT

DO IT YOURSELF

https://en.wikipedia.org/wiki/Prime_number

Solution

Removal of members
When removing a value from a list array, we have two options depending on our needs: we either remove the member and retain the
value in another variable, or we remove it and dispose of the value.

To remove a value from a list without retaining it, we use .remove() . The method takes one input argument, which is the value we would
like to remove from our list:

Alternatively, we can use del ; a Python syntax that we can use in this context to delete a speci�c member using its index:

As established above, we can also delete a member and retain its value. Of course we can do so by holding the value inside another
variable before deleting it.

Whilst that is a valid approach, Python’s list provide us with .pop() to simplify the process even further. The method takes one input
argument for the index of the member to be removed. It removes the member from the list and returns its value, so that we can retain it in
a variable:

primes = [2, 3, 5, 11, 7, 13, 17, 19, 23, 29]

primes[3:5] = [7, 11]

PYTHON

table.remove(174)

print(table)

PYTHON

[5, 12, 0, -1, 29, 'a text']

OUTPUT

del table[-1]

print(table)

PYTHON

[5, 12, 0, -1, 29]

OUTPUT

removed_value = table.pop(2)

print('Removed value:', removed_value)

print(table)

PYTHON

We know that the nucleotides of DNA include A, C, T, and G.

Given a list representing the nucleotides of a DNA strand as:

strand = ['A', 'C', 'G', 'G', 'C', 'M', 'T', 'A']

1. Find the index of the invalid nucleotide in strand.

2. Use the index you found to remove the invalid nucleotide from strand and retain the value in another variable. Display the
result as:

Removed from the strand: X

New strand: [X, X, X, ...]

3. What do you think happens once we run the following code, and why? What would be the �nal result displayed on the screen?

strand.remove('G')

print(strand)

Solution

Removed value: 0

[5, 12, -1, 29]

OUTPUT

DO IT YOURSELF

strand = ['A', 'C', 'G', 'G', 'C', 'M', 'T', 'A']

outlier_index = strand.index('M')

PYTHON

Solution

Solution

One of the two G nucleotides, the one at index 2 of the original array, is removed. This means that the .remove() method removes
only �rst instance of a member in an array. The output would therefore be:

['A', 'C', 'G', 'C', 'M', 'T', 'A']

Method–mediated operations
We already know that methods are akin to functions that are associated with a speci�c type. In this subsection, we will be looking into how
operations are performed using methods. To that end, we will not be introducing anything new, but recapitulate what we already know
from different perspectives.

So far in this chapter, we have learned how to perform different operations on list arrays in Python. You may have noticed that some
operations return a result that we can store in a variable, whilst others change the original value.

With that in mind, we can divide operations performed using methods into two general categories:

1. Operations that return a result without changing the original array:

2. Operations that use speci�c methods to change the original array, but do not necessarily return anything (in-place operations):

outlier_value = strand.pop(outlier_index)

print('Removed from the strand:', outlier_value)

print('New strand:', strand)

PYTHON

Removed from the strand: M

New strand: ['A', 'C', 'G', 'G', 'C', 'T', 'A']

OUTPUT

table = [1, 2, 3, 4]

index = table.index(3)

print(index)

print(table)

PYTHON

2

[1, 2, 3, 4]

OUTPUT

If we attempt to store the output of an operation that does not a return result inside a variable, the variable will be created, but its value
will be set to None:

It is important to know the difference between these types of operations. So as a rule of thumb, when we use methods to perform an
operation, we can only change the original value if it is an instance of a mutable type. See Table to �nd out which built-in types are mutable
in Python.

The methods that are associated with immutable objects always return the results and do not provide the ability to alter the original value:

In-place operation on a mutable object of type list:

In-place operation on an immutable object of type str:

table = [1, 2, 3, 4]

table.append(5)

print(table)

PYTHON

[1, 2, 3, 4, 5]

OUTPUT

result = table.append(6)

print(result)

print(table)

PYTHON

None

[1, 2, 3, 4, 5, 6]

OUTPUT

table = [5, 6, 7]

table.remove(6)

print(table)

PYTHON

[5, 7]

OUTPUT

http://127.0.0.1:7966/02-input_output.html#fig:nativeTypes

Normal operation on a mutable object of type list:

Normal operation on a mutable object of type list:

List members
A list is a collection of members that are independent of each other. Each member has its own type, and is therefore subject to the
properties and limitation of that type:

string = '567'

string.remove(20)

PYTHON

Error: AttributeError: 'str' object has no attribute 'remove'

ERROR

print(string)

PYTHON

567

OUTPUT

table = [5, 6, 7]

ind = table.index(6)

print(ind)

PYTHON

1

OUTPUT

string = '567'

ind = string.index('6')

print(ind)

PYTHON

1

OUTPUT

http://127.0.0.1:7966/02-input_output.html#varTypes

For instance, mathematical operations may be considered a feature of all numeric types demonstrated in Table. However, unless in speci�c
circumstance described in subsection Non-numeric values, such operations do not apply to instance of type str.

Likewise, the list plays the role of a container that may incorporate any number of values. Thus far, we have learned how to handle
individual members of a list. In this subsection, we will be looking at several techniques that help us address different circumstances
where we look at a list from a ‘wholist’ perspective; that is, a container whose members are unknown to us.

Membership test
Membership test operations [advanced]

We can check to see whether or not a speci�c value is a member of a list using the operator syntax in :

table = [1, 2.1, 'abc']

print(type(table[0]))

print(type(table[1]))

print(type(table[2]))

PYTHON

<class 'int'>

<class 'float'>

<class 'str'>

OUTPUT

table = [1, 2.1, 'abc']

table[0] += 1

table[-1] += 'def'

print(table)

PYTHON

[2, 2.1, 'abcdef']

OUTPUT

items = [1, 2.4, 'John', 5, 4]

print(2.4 in items)

PYTHON

True

OUTPUT

print(3 in items)

PYTHON

http://127.0.0.1:7966/02-input_output.html#fig:nativeTypes
http://127.0.0.1:7966/02-input_output.html#subsubsec:mathematicalOperations:nonNumerics
https://docs.python.org/3/reference/expressions.html#membership-test-operations

The results may be stored in a variable:

Similar to any other logical expression, we can negate membership tests by using :

False

OUTPUT

has_five = 5 in items

print(has_five)

PYTHON

True

OUTPUT

expr = 10 not in items

print(expr)

PYTHON

True

OUTPUT

expr = 5 not in items

print(expr)

PYTHON

False

OUTPUT

http://127.0.0.1:7966/02-input_output.html#subsec:logicalOperatons
http://127.0.0.1:7966/02-input_output.html#sec:logicalStatements:Negation

For numeric values, int and float may be used interchangeably:

Similar to other logical expression, membership tests may be incorporated into conditional statements:

WHEN T EST ING AG AINST str values — I . E. T EXT; DON’ T FORG ET T HAT IN PROG RAMMING , OPERAT IONS
INVOLVING T EXT S ARE ALWAYS CASE-SENSIT IVE.

REMEMBER

items = [1, 2.4, 'John', 5, 4]

john_capital = 'John'

john_small = 'john'

print(john_capital in items)

print(john_small in items)

PYTHON

True

False

OUTPUT

print(4 in items)

PYTHON

True

OUTPUT

print(4.0 in items)

PYTHON

True

OUTPUT

if 'John' in items:

 print('Hello John')

else:

 print('Hello')

PYTHON

http://127.0.0.1:7966/02-input_output.html#subsec:logicalOperatons

Given a list of randomly generated peptide sequences as:

Determine whether or not each of the following sequences exist in peptides; and if so, what is their corresponding index:

IVADH

CMGFT

DKAKL

THGYP

NNVSR

Display the results in the following format:

Sequence XXXXX was found at index XX

Solution

Hello John

OUTPUT

DO IT YOURSELF

peptides = [

 'FAEKE', 'DMSGG', 'CMGFT', 'HVEFW', 'DCYFH', 'RDFDM', 'RTYRA',

 'PVTEQ', 'WITFR', 'SWANQ', 'PFELC', 'KSANR', 'EQKVL', 'SYALD',

 'FPNCF', 'SCDYK', 'MFRST', 'KFMII', 'NFYQC', 'LVKVR', 'PQKTF',

 'LTWFQ', 'EFAYE', 'GPCCQ', 'VFDYF', 'RYSAY', 'CCTCG', 'ECFMY',

 'CPNLY', 'CSMFW', 'NNVSR', 'SLNKF', 'CGRHC', 'LCQCS', 'AVERE',

 'MDKHQ', 'YHKTQ', 'HVRWD', 'YNFQW', 'MGCLY', 'CQCCL', 'ACQCL'

]

PYTHON

sequence = "IVADH"

if sequence in peptides:

 index = peptides.index(sequence)

 print('Sequence', sequence, 'was found at index', index)

PYTHON

Solution

Solution

Solution

Solution

Length
Built-in functions: len

sequence = "CMGFT"

if sequence in peptides:

 index = peptides.index(sequence)

 print('Sequence', sequence, 'was found at index', index)

PYTHON

Sequence CMGFT was found at index 2

OUTPUT

sequence = "DKAKL"

if sequence in peptides:

 index = peptides.index(sequence)

 print('Sequence', sequence, 'was found at index', index)

PYTHON

sequence = "THGYP"

if sequence in peptides:

 index = peptides.index(sequence)

 print('Sequence', sequence, 'was found at index', index)

PYTHON

sequence = "NNVSR"

if sequence in peptides:

 index = peptides.index(sequence)

 print('Sequence', sequence, 'was found at index', index)

PYTHON

Sequence NNVSR was found at index 30

OUTPUT

https://docs.python.org/3.6/library/functions.html#len

The number of members contained within a list de�nes its length. Similar to the length of str values as discussed in mathematical
operations DIY-I and DIY-IV, we use the built-in function len() also to determine the length of a list:

The len() function always returns an integer value (int) equal to or greater than zero. We can store the length in a variable and use it in
different mathematical or logical operations:

We can also use the length of an array in conditional statements:

items = [1, 2.4, 'John', 5, 4]

print(len(items))

PYTHON

5

OUTPUT

print(len([1, 5, 9]))

PYTHON

3

OUTPUT

table = [1, 2, 3, 4]

items_length = len(items)

table_length = len(table)

print(items_length + table_length)

PYTHON

9

OUTPUT

print(len(table) > 2)

PYTHON

True

OUTPUT

http://127.0.0.1:7966/02-input_output.html#math_ops
http://127.0.0.1:7966/02-input_output.html#math_ops
http://127.0.0.1:7966/02-input_output.html#diy:mathsI
http://127.0.0.1:7966/02-input_output.html#diy:mathOpts:Huntington
http://127.0.0.1:7966/02-input_output.html#math_ops
http://127.0.0.1:7966/02-input_output.html#subsec:logicalOperatons
http://127.0.0.1:7966/03-conditional_statements.html

Given the list of random peptides de�ned in DIY:

1. De�ne a list called overlaps containing the sequences whose presence in peptides you con�rmed in DIY.

2. Determine the length of peptides.

3. Determine the length of overlaps.

Display yours results as follows:

overlaps = ['XXXXX', 'XXXXX', ...]

Length of peptides: XX

Length of overlaps: XX

students = ['Julia', 'John', 'Jane', 'Jack']

present = ['Julia', 'John', 'Jane', 'Jack', 'Janet']

if len(present) == len(students):

 print('All the students are here.')

else:

 print('One or more students are not here yet.')

PYTHON

One or more students are not here yet.

OUTPUT

BOT H in AND len() MAY BE U SED IN REFERENCE TO ANY T YPE OF ARRAY OR SEQU ENCE IN PYT HON.

SEE TABLE TO FIND OU T WHICH BU ILT- IN T YPES IN PYT HON ARE REG ARDED AS A SEQU ENCE.

REMEMBER

DO IT YOURSELF

http://127.0.0.1:7966/02-input_output.html#fig:nativeTypes

Solution

Solution

overlaps = list()

sequence = "IVADH"

if sequence in peptides:

 overlaps.append(sequence)

sequence = "CMGFT"

if sequence in peptides:

 overlaps.append(sequence)

sequence = "DKAKL"

if sequence in peptides:

 overlaps.append(sequence)

sequence = "THGYP"

if sequence in peptides:

 overlaps.append(sequence)

sequence = "NNVSR"

if sequence in peptides:

 overlaps.append(sequence)

print('overlaps:', overlaps)

PYTHON

overlaps: ['CMGFT', 'NNVSR']

OUTPUT

print('Length of peptides:', len(peptides))

PYTHON

Length of peptides: 42

OUTPUT

Solution

Weak References and Copies
In our discussion on mutability, we also discussed some of the in-place operations such as .remove() and .append() that we use to
modify an existing list. The use of these operations gives rise the following question: What if we need to perform an in-place operation,
but also want to preserve the original array?

In such cases, we create a deep copy of the original array before we call the method and perform the operation.

Suppose we have:

A weak reference for table_a, also referred to as an alias or a symbolic link, may be de�ned as follows:

Now if we perform an in-place operation on only one of the two variables (the original or the alias) as follows:

we will in effect change both of them:

print('Length of overlaps:', len(overlaps))

PYTHON

Length of overlaps: 2

OUTPUT

table_a = [1, 2, 3, 4]

PYTHON

table_b = table_a

print(table_a, table_b)

PYTHON

[1, 2, 3, 4] [1, 2, 3, 4]

OUTPUT

table_a.append(5)

PYTHON

print(table_a, table_b)

PYTHON

[1, 2, 3, 4, 5] [1, 2, 3, 4, 5]

OUTPUT

This is useful if we need to change the name of a variable under certain conditions to make our code more explicit and readable; however, it
does nothing to preserve an actual copy of the original data.

To retain a copy of the original array, however, we must perform a deep copy as follows:

where table_c represents a deep copy of table_b.

In this instance, performing an in-place operation on one variable would not have any impacts on the other one:

where both the original array and its weak reference (table_a and table_b) changed without in�uencing the deep copy (table_c).

There is also a shorthand for the .copy() method to create a deep copy. As far as arrays of type list are concerned, writing:

new_table = original_table[:]

is exactly the same as writing:

new_table = original_table.copy()

Here is an example:

table_c = table_b.copy()

print(table_b, table_c)

PYTHON

[1, 2, 3, 4, 5] [1, 2, 3, 4, 5]

OUTPUT

table_b.append(6)

print(table_a, table_b, table_c)

PYTHON

[1, 2, 3, 4, 5, 6] [1, 2, 3, 4, 5, 6] [1, 2, 3, 4, 5]

OUTPUT

table_a = ['a', 3, 'b']

table_b = table_a

table_c = table_a.copy()

table_d = table_a[:]

table_a[1] = 5

print(table_a, table_b, table_c, table_d)

PYTHON

Whilst both the original array and its weak reference (table_a and table_b) changed in this example; the deep copies (table_c and table_d)
have remained unchanged.

When de�ning a consensus sequence, it is common to include annotations to represent ambiguous amino acids. Four such
annotations are as follows:

Given a list of amino acids as:

1. Use amino_acids to create an independent list called amino_acids_annotations that contains all the standard amino acids.

2. Add to amino_acids_annotations the 1-letter annotations for the ambiguous amino acids as outlined in the table.

3. Evaluate the lengths for amino_acids and amino_acids_annotations and retain the result in a new list called lengths.

4. Using logical operations, test the two values stored in lengths for equivalence and display the result as a boolean (i.e. True or
False) output.

['a', 5, 'b'] ['a', 5, 'b'] ['a', 3, 'b'] ['a', 3, 'b']

OUTPUT

DO IT YOURSELF

amino_acids = [

 'A', 'R', 'N', 'D', 'C', 'E', 'Q', 'G', 'H', 'I',

 'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V'

]

PYTHON

http://127.0.0.1:7966/02-input_output.html#subsec:logicalOperatons

Solution

Solution

Solution

Solution

Conversion to list
As highlighted earlier in the section, arrays in Python can contain any value regardless of type. We can exploit this feature to extract some
interesting information about the data we store in an array.

To that end, we can convert any sequence to a list. See Table to �nd out which of the built-in types in Python are considered to be a
sequence.

Suppose we have the sequence for Protein Kinase A Gamma (catalytic) subunit for humans as follows:

amino_acid_annotations = amino_acids.copy()

PYTHON

ambiguous_annotations = ['X', 'B', 'Z', 'J']

amino_acid_annotations.extend(ambiguous_annotations)

PYTHON

lengths = [len(amino_acids), len(amino_acid_annotations)]

PYTHON

equivalence = lengths[0] == lengths[1]

print(equivalence)

PYTHON

False

OUTPUT

http://127.0.0.1:7966/02-input_output.html#sec:conversionType
http://127.0.0.1:7966/02-input_output.html#fig:nativeTypes
https://www.ncbi.nlm.nih.gov/protein/AAC41690.1?report=fasta

We can now convert our sequence from its original type of str to list by using list() as a function. Doing so will automatically
decompose the text down to individual characters:

Multiple lines of text may be split into

several lines inside parenthesis:

human_pka_gamma = (

 'MAAPAAATAMGNAPAKKDTEQEESVNEFLAKARGDFLYRWGNPAQNTASSDQFERLRTLGMGSFGRVMLV'

 'RHQETGGHYAMKILNKQKVVKMKQVEHILNEKRILQAIDFPFLVKLQFSFKDNSYLYLVMEYVPGGEMFS'

 'RLQRVGRFSEPHACFYAAQVVLAVQYLHSLDLIHRDLKPENLLIDQQGYLQVTDFGFAKRVKGRTWTLCG'

 'TPEYLAPEIILSKGYNKAVDWWALGVLIYEMAVGFPPFYADQPIQIYEKIVSGRVRFPSKLSSDLKDLLR'

 'SLLQVDLTKRFGNLRNGVGDIKNHKWFATTSWIAIYEKKVEAPFIPKYTGPGDASNFDDYEEEELRISIN'

 'EKCAKEFSEF'

)

print(type(human_pka_gamma))

PYTHON

<class 'str'>

OUTPUT

The function "list" may be used to convert string

variables into a list of characters:

pka_list = list(human_pka_gamma)

print(pka_list)

PYTHON

['M', 'A', 'A', 'P', 'A', 'A', 'A', 'T', 'A', 'M', 'G', 'N', 'A', 'P', 'A', 'K', 'K', 'D', 'T', 'E', 'Q', 'E

OUTPUT

Ask the user to enter a sequence of single-letter amino acids in lower case. Convert the sequence to list and:

1. Count the number of serine and threonine residues and display the result in the following format:

Total number of serine residues: XX

Total number of threonine residues: XX

2. Check whether or not the sequence contains both serine and threonine residues:

If it does, display:

The sequence does contain both serine and threonine residues.

if it does not, display:

The sequence does not contain both serine and threonine residues.

Solution

sequence_str = input('Please enter a sequence of signle-letter amino acids in lower-case: ')

sequence = list(sequence_str)

ser_count = sequence.count('s')

thr_count = sequence.count('t')

print('Total number of serine residues:', ser_count)

print('Total number of threonine residues:', thr_count)

DO IT YOURSELF

Solution

if ser_count > 0 and thr_count > 0:

 response_state = ''

else:

 response_state = 'not'

print(

 'The sequence does',

 'response_state',

 'contain both serine and threonine residues.'

)

Useful methods
Data Structures: More on Lists

In this subsection, we will be reviewing some of the useful and important methods that are associated with object of type list. To that end,
we shall use snippets of code that exemplify such methods in practice. A cheatsheet of the methods associated with the built-in arrays in
Python can be helpful.

G ENERATORS REPRESENT A SPECIFIC T YPE IN PYT HON WHOSE RESU LT S ARE NOT IMMEDIAT ELY
EVALU AT ED. T HIS IS A T ECHNIQU E REFERRED TO AS LAZ Y EVALU AT ION IN FU NCT IONAL PROG RAMMING ,
AND IS OFT EN U SED IN T HE CONT EXT OF A FOR-LOOP. T HIS IS BECAU SE T HEY POST PONE T HE
EVALU AT ION OF T HEIR RESU LT S FOR AS LONG AS POSSIBLE. WE DO NOT DISCU SS G ENERATORS IN T HE
COU RSE, BU T YOU CAN FIND OU T MORE ABOU T T HEM IN T HE OFFICIAL DOCU MENTAT IONS.

ADVANCED TOPIC

https://docs.python.org/3.6/tutorial/datastructures.html#more-on-lists
https://en.wikipedia.org/wiki/Generator_(computer_programming)
http://127.0.0.1:7966/02-input_output.html#varTypes
https://en.wikipedia.org/wiki/Functional_programming
http://127.0.0.1:7966/aio.html
https://docs.python.org/3.6/howto/functional.html#generators

Commons operations for list, tuple, and set arrays in Python.

The methods outline here are not individually described; however, at this point, you should be able to work out what they do by looking at
their names and respective examples.

Count a speci�c value within a list:

Extend a list:

table_a = [1, 2, 2, 2]

table_b = [15, 16]

print(table_a.count(2))

PYTHON

3

OUTPUT

table_a = [1, 2, 2, 2]

table_b = [15, 16]

table_c = table_a.copy() # deep copy.

table_c.extend(table_b)

print(table_a, table_b, table_c)

PYTHON

Extend a list by adding two lists to each other. Note that adding two lists is not an in-place operation:

We can also reverse the values in a list. There are two methods for doing so:Being a generator means that the output of the function is not
evaluated immediately; and instead, we get a generic output:

1. Through an in-place operation using .reverse()

2. Through reversed() , which is a build-in generator function.

[1, 2, 2, 2] [15, 16] [1, 2, 2, 2, 15, 16]

OUTPUT

table_a = [1, 2, 2, 2]

table_b = [15, 16]

table_c = table_a + table_b

print(table_a, table_b, table_c)

PYTHON

[1, 2, 2, 2] [15, 16] [1, 2, 2, 2, 15, 16]

OUTPUT

table_a = [1, 2, 2, 2]

table_b = [15, 16]

table_c = table_a.copy() # deep copy.

table_d = table_a + table_b

print(table_c == table_d)

PYTHON

False

OUTPUT

table = [1, 2, 2, 2, 15, 16]

table.reverse()

print("Reversed:", table)

PYTHON

Reversed: [16, 15, 2, 2, 2, 1]

OUTPUT

We can, however, force the evaluation process by converting the generator results onto a list:

Members of a list may be sorted in-place as follows:

The .sort() method takes an optional keyword argument entitled reverse (default: False). If set to True, the method will perform a
descending sort:

table = [1, 2, 2, 2, 15, 16]

table_rev = reversed(table)

print("Result:", table_rev)

print("Type:", type(table_rev))

PYTHON

Result: <list_reverseiterator object at 0x7f2d50df6710>

Type: <class 'list_reverseiterator'>

OUTPUT

table_rev_evaluated = list(table_rev)

print('Evaluated:', table_rev_evaluated)

PYTHON

Evaluated: [16, 15, 2, 2, 2, 1]

OUTPUT

table = [16, 2, 15, 1, 2, 2]

table.sort()

print("Sorted (ascending):", table)

PYTHON

Sorted (ascending): [1, 2, 2, 2, 15, 16]

OUTPUT

T HERE IS ALSO T HE BU ILT- IN FU NCT ION sorted() T HAT WORKS IN A SIMILAR WAY TO reversed() .
ALSO A G ENERATOR FU NCT ION, IT OFFERS MORE ADVANCED FEAT U RES T HAT ARE BEYOND T HE SCOPE
OF T HIS COU RSE. YOU CAN FIND OU T MORE ABOU T IT FROM T HE OFFICIAL DOCU MENTAT IONS AND
EXAMPLES.

ADVANCED TOPIC

https://docs.python.org/3/library/functions.html#sorted
https://docs.python.org/3/howto/sorting.html#sortinghowto

We can also create an empty list, so that we can add members to it later in our code using .append() or .extend() amongst other
tools:

table = [16, 2, 15, 1, 2, 2]

table.sort(reverse=True)

print("Sorted (descending):", table)

PYTHON

Sorted (descending): [16, 15, 2, 2, 2, 1]

OUTPUT

table = list()

print(table)

PYTHON

[]

OUTPUT

table.append(5)

print(table)

PYTHON

[5]

OUTPUT

another_table = ['Jane', 'Janette']

table.extend(another_table)

print(another_table)

PYTHON

['Jane', 'Janette']

OUTPUT

Create a list, and experiment with each of the methods provided in the above example. Try including members of different types
in your list and see how each of these methods behave.

Solution

This DIY was intended to encourage you to experiment with the methods outlined.

Nested arrays
At this point, you should be comfortable with creating, handling, and manipulating arrays of type list in Python. It is important to have a
relatively good understanding of the principles outlined in this section so far before you start learning about nested arrays.

We have already established that arrays can contain any value regardless of type. This means that they also contain other arrays. An
array that includes at least one member that is itself an array is referred to as a nested arrays. This can be thought of as a table with more
than one column:

DO IT YOURSELF

ARRAYS CAN CONTAIN VALU ES OF ANY T YPE. T HIS RU LE APPL IES TO NEST ED ARRAYS TOO. WE HAVE
EXCLU SIVELY INCLU DED int NU MBERS IN OU R TABLE TO T RIVIAL ISE T HAT EXAMPLE.

REMEMBER

Implementation
The table can be written in Python as a nested array:

Indexing
The indexing principles for nested arrays is slightly different. To retrieve an individual member in a nested list, we always reference the
row index, followed by the column index.

We may visualise the process as follows:

To retrieve an entire row, we only need to include the reference for that row:

The list has 3 members, 2 of which

are arrays of type list:

table = [[1, 2, 3], 4, [7, 8]]

print(table)

PYTHON

[[1, 2, 3], 4, [7, 8]]

OUTPUT

print(table[0])

PYTHON

and to retrieve a speci�c member, we include the reference for both the row and column:

We may also extract slices from a nested array. The protocol is identical to normal arrays described in subsection slicing. In nested arrays,
however, we may take slices from the columns as well as the rows:

Note that only 2 of the 3 members in table are arrays of type list:

[1, 2, 3]

OUTPUT

print(table[0][1])

PYTHON

2

OUTPUT

print(table[:2])

PYTHON

[[1, 2, 3], 4]

OUTPUT

print(table[0][:2])

PYTHON

[1, 2]

OUTPUT

print(table[0], type(table[0]))

PYTHON

[1, 2, 3] <class 'list'>

OUTPUT

print(table[2], type(table[2]))

PYTHON

However, there is another member that is not an array:

In most circumstances, we would want all the members in an array to be homogeneous in type — i.e. we want them all to have the same
type. In such cases, we can implement the table as:

An array with only one member — e.g. [4], is sometimes referred to as a singleton array.

[7, 8] <class 'list'>

OUTPUT

print(table[1], type(table[1]))

PYTHON

4 <class 'int'>

OUTPUT

table = [[1, 2, 3], [4], [7, 8]]

print(table[1], type(table[1]))

PYTHON

[4] <class 'list'>

OUTPUT

Give then following of pathogens and their corresponding diseases:

1. Substituting N/A for None, create an array to represent the table in the original order. Retain the array in a variable and display
the result.

2. Modify the array you created so that the members are sorted descendingly and display the result.

Solution

DO IT YOURSELF

disease_pathogen = [

 ["Bacterium", "Negative", "Shigella flexneri" , "Bacillary dysentery"],

 ["Prion", None, "PrP(sc)", "Transmissible spongiform encephalopathies"],

 ["Bacterium", "Negative", "Vibrio cholerae", "Cholera"],

 ["Bacterium", "Negative", "Listeria monocytogenes", "Listeriosis"],

 ["Virus", None, "Hepatitis C", "Hepatitis"],

 ["Bacterium", "Negative", "Helicobacter pylori", "Peptic ulcers"],

 ["Bacterium", "Negative", "Mycobacterium tuberculosis", "Tuberculosis"],

 ["Bacterium", "Negative", "Chlamydia trachomatis", "Chlamydial diseases"],

 ["Virus", None, "Human Immunodeficiency Virus", "Human Immunodeficiency"]

]

print(disease_pathogen)

PYTHON

[['Bacterium', 'Negative', 'Shigella flexneri', 'Bacillary dysentery'], ['Prion', None, 'PrP(sc)', 'Tran

OUTPUT

Solution

Dimensions
A nested array is considered two dimensional or 2D when:

all of the members in a nested array are arrays themselves;

all of the sub-arrays have the same length — i.e. all the columns in the table are �lled and have the same number of rows; and,

all of the members of the sub-arrays are homogeneous in type — i.e. they all have the same type (e.g. int).

A two dimensional arrays may be visualised as follows:

disease_pathogen.sort(reverse=True)

print(disease_pathogen)

PYTHON

[['Virus', None, 'Human Immunodeficiency Virus', 'Human Immunodeficiency'], ['Virus', None, 'Hepatitis C

OUTPUT

Such arrays are referred to in mathematics as a matrix. We can therefore represent a two-dimensional array as a mathematical matrix. To
that end, the above array would translate to the annotation displayed in equation below.

The implementation of these arrays is identical to the implementation of other nested arrays. We can therefore code our table in Python as:

NEST ED ARRAYS MAY T HEMSELVES BE NEST ED. T HIS MEANS T HAT, IF NEEDED, WE CAN HAVE 3 , 4 OR N
DIMENSIONAL ARRAYS, TOO. ANALYSIS AND ORG ANISAT ION OF SU CH ARRAYS IS AN IMPORTANT PART
OF A F IELD KNOWN AS OPT IMISAT ION IN COMPU T ER SCIENCE AND MAT HEMAT ICS. OPT IMISAT ION IS
IT SELF T HE CORNERSTONE OF MACHINE LEARNING , AND ADDRESSES T HE PROBLEM KNOWN AS CU RSE
OF DIMENSIONALIT Y.

ADVANCED TOPIC

table =
⎡

⎣
⎢

1

4

7

2

5

8

3

6

9

⎤

⎦
⎥

table = [

 [1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]

]

print(table)

PYTHON

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

OUTPUT

print(table[2])

PYTHON

[7, 8, 9]

OUTPUT

print(table[1][0])

PYTHON

4

OUTPUT

https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Curse_of_dimensionality

Computers see images as multidimensional arrays (matrices). In its simplest form, an image is a two-dimensional array containing
only 2 colours.

Given the following black and white image:

1. Considering that black and white squares represent zeros and ones respectively, create a two-dimensional array to represent
the above image. Display the results.

2. Create a new array, but this time use False and True to represent black and white respectively.

Display the results.

print(table[:2])

PYTHON

[[1, 2, 3], [4, 5, 6]]

OUTPUT

DO IT YOURSELF

Solution

Solution

Summary
At this point, you should be familiar with arrays and how they work in general. Throughout this section, we talked about list, which is one
the most popular types of built-in arrays in Python. To that end, we learned:

how to list from the scratch;

how to manipulate list using different methods;

how to use indexing and slicing techniques to our advantage;

mutability — a concept we revisit in the forthcoming lessons;

in-place operations, and the difference between weak references and deep copies;

cross = [

 [0, 0, 0, 0, 0, 0, 0],

 [0, 1, 0, 0, 0, 1, 0],

 [0, 0, 1, 0, 1, 0, 0],

 [0, 0, 0, 1, 0, 0, 0],

 [0, 0, 1, 0, 1, 0, 0],

 [0, 1, 0, 0, 0, 1, 0],

 [0, 0, 0, 0, 0, 0, 0]

]

print(cross)

PYTHON

[[0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 1, 0

OUTPUT

cross_bool = [

 [False, False, False, False, False, False, False],

 [False, True, False, False, False, True, False],

 [False, False, True, False, True, False, False],

 [False, False, False, True, False, False, False],

 [False, False, True, False, True, False, False],

 [False, True, False, False, False, True, False],

 [False, False, False, False, False, False, False]

]

print(cross_bool)

PYTHON

[[False, False, False, False, False, False, False], [False, True, False, False, False, True, False], [Fa

OUTPUT

nested and multi-dimensional arrays; and,

how to convert other sequences (e.g. str) to list.

Tuple
Data Structures: Tuples and Sequences

Another type of built-in arrays, tuple is an immutable alternative to list. That is, once created, the contents may not be modi�ed in any
way. One reason we use tuples is to ensure that the contents of our array does not change accidentally.

For instance, we know that in the Wnt signaling pathway, there are two co-receptors. This is �nal, and would not change at any point in our
programme.

TO IMPLEMENT A tuple IN PYT HON, WE PLACE OU R VALU ES SEPARAT ED BY COMMAS INSIDE
PARENT HESIS OR (1 , 2 , 3 , …) .

REMEMBER

pathway = 'Wnt Signaling'

coreceptors = ('Frizzled', 'LRP')

print(type(coreceptors))

PYTHON

<class 'tuple'>

OUTPUT

print(coreceptors)

PYTHON

('Frizzled', 'LRP')

OUTPUT

wnt = (pathway, coreceptors)

print(type(wnt))

PYTHON

https://docs.python.org/3.6/tutorial/datastructures.html#tuples-and-sequences
http://www.cell.com/cell/fulltext/S0092-8674(12)00586-7

Indexing and slicing principles for tuple is identical to list, which we discussed in subsection indexing and slicing respectively.

Conversion to tuple
Similar to list, we can convert other sequences to tuple:

<class 'tuple'>

OUTPUT

print(wnt)

PYTHON

('Wnt Signaling', ('Frizzled', 'LRP'))

OUTPUT

print(wnt[0])

PYTHON

Wnt Signaling

OUTPUT

numbers_list = [1, 2, 3, 4, 5]

print(type(numbers_list))

PYTHON

<class 'list'>

OUTPUT

numbers = tuple(numbers_list)

print(numbers)

PYTHON

(1, 2, 3, 4, 5)

OUTPUT

Immutability
In contrast with list, however, if we attempt to change the contents of a tuple, a TypeError is raised:

Even though tuple is an immutable type, it can contain both mutable and immutable objects:

print(type(numbers))

PYTHON

<class 'tuple'>

OUTPUT

text = 'This is a string.'

print(type(text))

PYTHON

<class 'str'>

OUTPUT

characters = tuple(text)

print(characters)

PYTHON

('T', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 's', 't', 'r', 'i', 'n', 'g', '.')

OUTPUT

print(type(characters))

PYTHON

<class 'tuple'>

OUTPUT

coreceptors[1] = 'LRP5/6'

PYTHON

Error: TypeError: 'tuple' object does not support item assignment

ERROR

and mutable objects inside a tuple may still be changed:

(immutable, immutable, immutable, mutable)

mixed_tuple = (1, 2.5, 'abc', (3, 4), [5, 6])

print(mixed_tuple)

PYTHON

(1, 2.5, 'abc', (3, 4), [5, 6])

OUTPUT

print(mixed_tuple, type(mixed_tuple))

PYTHON

(1, 2.5, 'abc', (3, 4), [5, 6]) <class 'tuple'>

OUTPUT

print(mixed_tuple[4], type(mixed_tuple[4]))

PYTHON

[5, 6] <class 'list'>

OUTPUT

WHY / HO W CAN WE CHANGE M UTABLE O BJE CTS I NSI DE A tuple WHE N I T I S I M M UTABLE ? MEMBERS
OF A tuple OR NOT DIRECT LY STORED IN T HE MEMORY. AN IMMU TABLE VALU E (E.G . AN int) HAS AN
EXIST ING , PREDEFINED REFERENCE IN T HE MEMORY. WHEN U SED IN A tuple , IT IS T HAT REFERENCE
T HAT IS ASSOCIAT ED WIT H T HE tuple , AND NOT T HE VALU E IT SELF. ON T HE OT HER HAND, A MU TABLE
OBJECT DOES NOT HAVE A PREDEFINED REFERENCE IN T HE MEMORY AND IS INST EAD CREAT ED ON
REQU EST SOMEWHERE IN T HE MEMORY (WHEREVER T HERE IS ENOU G H FREE SPACE) . WHILST WE CAN
NEVER CHANG E OR REDEFINE PREDEFINED REFERENCES, WE CAN ALWAYS MANIPU LAT E SOMET HING WE
HAVE DEFINED OU RSELVES. WHEN WE MAKE SU CH AN ALT ERAT ION, T HE LOCAT ION OF OU R MU TABLE
OBJECT IN T HE MEMORY MAY WELL CHANG E, BU T IT S REFERENCE — WHICH IS WHAT IS STORED IN A
tuple , REMAINS IDENT ICAL . YOU CAN FIND OU T WHAT IS T HE REFERENCE AN OBJECT IN PYT HON U SING
T HE FU NCT ION id() . IF YOU EXPERIMENT WIT H IT, YOU WILL NOT ICE T HAT T HE REFERENCE TO AN
IMMU TABLE OBJECT (E.G . AN int VALU E) WOU LD NEVER CHANG E, NO MAT T ER HOW MANY T IME YOU
DEFINE IT IN A DIFFERENT CONT EXT OR VARIABLE. IN CONT RAST, T HE REFERENCE NU MBER TO A
MU TABLE OBJECT (E.G . A list) CHANG ES EVERY T IME IT IS DEFINED, EVEN IF IT CONTAINS EXACT LY T HE
SAME VALU ES.

ADVANCED TOPIC

Tuples may be empty or have a single value (singleton):

Lists are mutable, so we can alter their values:

mixed_tuple[4][1] = 15

print(mixed_tuple)

PYTHON

(1, 2.5, 'abc', (3, 4), [5, 15])

OUTPUT

mixed_tuple[4].append(25)

print(mixed_tuple)

PYTHON

(1, 2.5, 'abc', (3, 4), [5, 15, 25])

OUTPUT

We cannot remove the list from the tuple,

but we can empty it by clearing its members:

mixed_tuple[4].clear()

print(mixed_tuple)

PYTHON

(1, 2.5, 'abc', (3, 4), [])

OUTPUT

member_a = tuple()

print(member_a, type(member_a), len(member_a))

PYTHON

() <class 'tuple'> 0

OUTPUT

Packing and unpacking
A tuple may be constructed without parenthesis. This is an implicit operation and is known as packing.

Empty parentheses also generate an empty tuple.

Remember: we cannot add values to an empty tuple later.

member_b = ()

print(member_b, type(member_b), len(member_b))

PYTHON

() <class 'tuple'> 0

OUTPUT

Singleton - Note that it is essential to include

a comma after the value in a single-member tuple:

member_c = ('John Doe',)

print(member_c, type(member_c), len(member_c))

PYTHON

('John Doe',) <class 'tuple'> 1

OUTPUT

If the comma is not included, a singleton tuple

is not constructed:

member_d = ('John Doe')

print(member_d, type(member_d), len(member_d))

PYTHON

John Doe <class 'str'> 8

OUTPUT

IMPL ICIT PROCESSES MU ST BE U SED SPARING LY. AS ALWAYS, T HE MORE COHERENT T HE CODE, T HE
BET T ER IT IS .

REMEMBER

The reverse of this process is known as unpacking. Unpacking is no longer considered an implicit process because it replaces unnamed
values inside an array, with named variables:

numbers = 1, 2, 3, 5, 7, 11

print(numbers, type(numbers), len(numbers))

PYTHON

(1, 2, 3, 5, 7, 11) <class 'tuple'> 6

OUTPUT

Note that for a singleton, we still need to

include the comma.

member = 'John Doe',

print(member, type(member), len(member))

PYTHON

('John Doe',) <class 'tuple'> 1

OUTPUT

dimensions = 14, 17, 12

x, y, z = dimensions

print(x)

PYTHON

14

OUTPUT

print(x, y)

PYTHON

14 17

OUTPUT

Given:

Unpack protein_info into two distinct variables protein_name and protein_length.

Solution

member = ('Jane Doe', 28, 'London', 'Student', 'Female')

name, age, city, status, gender = member

print('Name:', name, '- Age:', age)

PYTHON

Name: Jane Doe - Age: 28

OUTPUT

DO IT YOURSELF

protein_info = ('GFP', 238)

PYTHON

protein_name, protein_length = protein_info

PYTHON

T HERE IS ANOT HER T YPE OF tuple IN PYT HON ENT IT LED namedtuple . IT ALLOWS FOR T HE MEMBERS OF A
tuple TO BE NAMED INDEPENDENT LY (E.G . member.name OR member.age) , AND T HEREBY EL IMINAT ES T HE
NEED FOR U NPACKING . IT WAS ORIG INALLY IMPLEMENT ED BY RAYMOND HET T ING ER, ONE OF PYT HON’ S
CORE DEVELOPERS, FOR PYT HON 2 . 4 (IN 2 0 0 4) BU T WAS MU CH NEG LECT ED AT T HE T IME. IT HAS SINCE
G AINED POPU LARIT Y AS A VERY U SEFU L TOOL . namedtuple IS NOT A BU ILT- IN TOOL , SO IT IS NOT
DISCU SSED HERE. HOWEVER, IT IS INCLU DED IN T HE DEFAU LT L IBRARY AND IS INSTALLED AS A PART
OF PYT HON. IF YOU ARE PART ICU LARLY ADVENT U ROU S, OR WANT TO LEARN MORE, FEEL FREE TO HAVE
A LOOK AT T HE OFFICIAL DOCU MENTAT IONS AND EXAMPLES. RAYMOND IS ALSO A REG U LAR SPEAKER
AT PYCON (INT ERNAT IONAL PYT HON CONFERENCES) , RECORDING S OF WHICH ARE AVAILABLE ON
YOU T U BE. HE ALSO U SES HIS T WIT T ER TO TALK ABOU T SMALL , BU T IMPORTANT FEAT U RES IN PYT HON
(Y ES, T WEET S!) .

NOTE

https://twitter.com/raymondh
https://docs.python.org/3.6/library/collections.html#collections.namedtuple

Summary
In this section, we learned about tuple, another type of built-in arrays in Python that is immutable. This means that once created, the array
can no longer be altered. We saw that trying to change the value of a tuple raises a TypeError. We also established that list and tuple
follow an identical indexing protocol, and that they have 2 methods in common: .index()() and .count() . Finally, we talked about
packing and unpacking techniques, and how they improve the quality and readability of our code.

If you are interested in learning about list and tuple in more depth, have a look at the of�cial documentations of Sequence Types – list,
tuple, range.

Exercises

G RAPH T HEORY WAS INIT IALLY DEVELOPED BY T HE RENOWNED SWISS MAT HEMAT ICIAN AND LOG ICIAN
LEONHARD EU LER (1 7 0 7 – 1 7 8 3) . HOWEVER, G RAPHS IN T HE SENSE DISCU SSED HERE WERE
INT RODU CED BY T HE ENG LISH MAT HEMAT ICIAN JAMES JOSEPH SYLVEST ER (1 8 1 4 – 1 8 9 7) .

INTERESTING FACT

https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

1. We have

table = [[1, 2, 3], ['a', 'b'], [1.5, 'b', 4], [2]]

what is the length of table and why?

Store your answer in a variable and display it using print() .

2. Given the sequence for the Gamma (catalytic) subunit of the Protein Kinase A as:

human_pka_gamma = (

 'MAAPAAATAMGNAPAKKDTEQEESVNEFLAKARGDFLYRWGNPAQNTASSDQFERLRTLGMGSFGRVML'

 'VRHQETGGHYAMKILNKQKVVKMKQVEHILNEKRILQAIDFPFLVKLQFSFKDNSYLYLVMEYVPGGEM'

 'FSRLQRVGRFSEPHACFYAAQVVLAVQYLHSLDLIHRDLKPENLLIDQQGYLQVTDFGFAKRVKGRTWT'

 'LCGTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAVGFPPFYADQPIQIYEKIVSGRVRFPSKLSSDLK'

 'DLLRSLLQVDLTKRFGNLRNGVGDIKNHKWFATTSWIAIYEKKVEAPFIPKYTGPGDASNFDDYEEEEL'

 'RISINEKCAKEFSEF'

)

Using the sequence;

work out and display the number of Serine (S) residues.

work out and display the number of Threonine (T) residues.

calculate and display the total number of Serine and Threonine residues in the following format:

Serine: X

Threonine: X

create a nested array to represent the following table, and call it :

END OF CHAPTER EXERCISES

3. Explain why in the previous question, we used the term nested instead of two-dimensional in reference to the array? Store your
answer in a variable and display it using print() .

4. Graph theory is a prime object of discrete mathematics and is utilised for the non-linear analyses of data. The theory is
extensively used in systems biology, and is gaining momentum in bioinformatics too. In essence, a graph is a structure that
represents a set of object (nodes) and the connections between them (edges).

The aforementioned connections are described using a special binary (zero and one) matrix known as the adjacency matrix. The
elements of this matrix indicate whether or not a pair of nodes in the graph are adjacent to one another.

where each row in the matrix represents a node of origin in the graph, and each column a node of destination:

 If the graph maintains a connection (edge) between 2

nodes (e.g. between nodes A and B in the graph above), the corresponding value between those nodes would be #1 in the matrix,
and if there are no connections, the corresponding value would #0.

https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Adjacency_matrix

Given the following graph:

Determine the adjacency matrix and implement it as a two-dimensional array in Python. Display the �nal array.

Solution

Q1

Q2

table = [[1, 2, 3], ['a', 'b'], [1.5, 'b', 4], [2]]

table_length = len(table)

print('length of Table:', table_length)

reason = (

 "The length of a `list` is a function of its "

 "distinct members, regardless of their types."

)

print('')

print(reason)

PYTHON

length of Table: 4

The length of a `list` is a function of its distinct members, regardless of their types.

OUTPUT

human_pka_gamma = (

 'MAAPAAATAMGNAPAKKDTEQEESVNEFLAKARGDFLYRWGNPAQNTASSDQFERLRTLGMGSFGRVML'

 'VRHQETGGHYAMKILNKQKVVKMKQVEHILNEKRILQAIDFPFLVKLQFSFKDNSYLYLVMEYVPGGEM'

 'FSRLQRVGRFSEPHACFYAAQVVLAVQYLHSLDLIHRDLKPENLLIDQQGYLQVTDFGFAKRVKGRTWT'

 'LCGTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAVGFPPFYADQPIQIYEKIVSGRVRFPSKLSSDLK'

 'DLLRSLLQVDLTKRFGNLRNGVGDIKNHKWFATTSWIAIYEKKVEAPFIPKYTGPGDASNFDDYEEEEL'

 'RISINEKCAKEFSEF'

)

total_serine = human_pka_gamma.count("S")

total_threonine = human_pka_gamma.count("T")

print('Serine:', total_serine)

print('Threonine:', total_threonine)

residues = [

 ['S', total_serine],

 ['T', total_threonine]

]

print(residues)

PYTHON

Serine: 19

Threonine: 13

[['S', 19], ['T', 13]]

OUTPUT

Q3

Q4

lists and tuples are 2 types of arrays.

An index is a unique reference to a speci�c value and Python uses a zero-based indexing system.

lists are mutable because their contents to be modi�ed.

slice() , .pop() , .index() , .remove() and .insert() are some of the key functions used on mutable arrays.

tuples are immutable which means its contents cannot be modi�ed.

Content from Iterations

Last updated on 2024-02-27 | Edit this page

answer = (

 "Members of a two-dimensional array must themselves be arrays of "

 "equal lengths containing identically typed members."

)

print(answer)

PYTHON

Members of a two-dimensional array must themselves be arrays of equal lengths containing identically typ

OUTPUT

Column initials:

S, H, A, A, G

adjacency_matrix = [

 [0, 1, 0, 0, 0], # Stress

 [0, 0, 1, 0, 0], # Hypothalamus

 [0, 0, 0, 1, 0], # Anterior Pituitary Gland

 [0, 0, 0, 0, 1], # Adrenal Cortex

 [0, 1, 1, 0, 0], # Glucocorticoids

]

print(adjacency_matrix)

PYTHON

[[0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1], [0, 1, 1, 0, 0]]

OUTPUT

KEY POINTS

http://127.0.0.1:7966/05-iterations.html
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/05-iterations.Rmd
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/05-iterations.Rmd

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

For Loop with Python ListFor Loop with Python List

For Loop through Numpy arrayFor Loop through Numpy array

OVERVIEW

Questions

What do we mean by iterations and loops?

How are for-loops implemented?

Can conditional statements be used in iterations?

When to use while-loops?

Objectives

Understanding the concept of iterations and loops.

Learning the processes involved in for-loops implementation.

Building concept of using conditional statements in loops.

Understanding when to use while loop.

http://127.0.0.1:7966/05-iterations.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1
https://www.youtube.com/watch?v=40mryCzIBwc
https://www.youtube.com/watch?v=-Ex4JtqhWLw

This chapter assumes that you are familiar with the following concepts in Python 3:

I/O Operations

Variables and Types

Mathematical Operation

Logical Operations

Indentation Rule

Conditional Statements

Arrays

Additionally, make sure that you are comfortable with the principles of indexing in arrays before you start this section. It is very important
that you have a good understanding of arrays and sequences, because the concept of iteration in programming deals almost exclusively
with these subjects.

The concept
We employ iterations and loops in programming to perform repetitive operations. A repetitive operation is a reference to one or several
de�ned operations that are repeated multiple times.

For instance, suppose we have a list of 5 numbers as follows:

numbers = [-3, -2, 5, 0, 12]

Now we would like to multiply each number by 2. Based on what we have learned thus far, this is how we would approach this problem:

PREREQUISITE

YOU CAN PRACT ICE EVERYT HING IN T HIS SECT ION AND T HE SU BSEQU ENT ONES AS YOU HAVE BEEN
DOING SO FAR. HOWEVER, IF YOU FIND IT HARD TO G RASP SOME OF T HE CONCEPT S, DON’ T WORRY,
YOU ARE NOT ALONE. IT TAKES PRACT ICE. TO HELP YOU WIT H T HAT, PHIL IP G U O FROM U C SAN DIEG O
(CAL IF . , U SA) HAS DEVELOPED PYT HONT U TOR.COM, AN EXCELLENT ONLINE TOOL FOR LEARNING
PY T HON. ON T HAT WEBSIT E, WRIT E (OR ‘ COPY AND PAST E’) YOU R CODE IN T HE EDITOR, T HEN CL ICK
VISU ALIZ E EXECU T ION. IN T HE NEW PAG E, U SE T HE FORWARD AND BACK BU T TONS TO SEE A ST EP-BY-
ST EP G RAPHICAL VISU ALISAT ION OF T HE PROCESSES T HAT OCCU R DU RING T HE EXECU T ION OF YOU R
CODE. T RY IT ON T HE EXAMPLES IN T HIS SECT ION.

NOTE

http://127.0.0.1:7966/02-input_output.html#operations
http://127.0.0.1:7966/02-input_output.html#varTypes
http://127.0.0.1:7966/02-input_output.html#math_ops
http://127.0.0.1:7966/02-input_output.html#subsec:logicalOperatons
http://127.0.0.1:7966/03-conditional_statements.html#subsubsec:indentationRule
http://127.0.0.1:7966/03-conditional_statements.html
http://127.0.0.1:7966/04-arrays.html
http://127.0.0.1:7966/04-arrays.html#sec:list:indexing
http://www.pgbovine.net/
http://www.pythontutor.com/visualize.html#mode=edit

Whilst this does the job, it is clearly very tedious and repetitive. In addition to that, if we have an array of several thousand members, this
approach becomes infeasible.

The process of multiplying individual members of our array with 2 is a very simple example of a repetitive operations.

There are some universal tools for iterations that exist in all programming languages — e.g. for and while loops. Some other tools such
as vectorisation or generators, however, are unique to one or several speci�c programming languages.

Throughout this section, we will discuss iterations via for and while loops, and review some real-world examples that may only be
addressed using iterative processes.

for-loops
Some of the data show that up to 80% of all conventional iterations are implemented as for loops. Whether or not it is the best choice in
of all these cases is a matter of opinion. What is important, however, is to learn the difference between the 2 methods and feel comfortable
with how they work.

Implementation of for loops in Python is simple compared to other programming languages. It essentially iterates through an existing
iterable variable — e.g. an array, and retrieves the values from it one by one, from the beginning right down to the end.

numbers = [-3, -2, 5, 0, 12]

numbers[0] *= 2

numbers[1] *= 2

numbers[2] *= 2

numbers[3] *= 2

numbers[4] *= 2

print(numbers)

PYTHON

[-6, -4, 10, 0, 24]

OUTPUT

IN PROG RAMMING , T HERE IS A U NIVERSALLY APPRECIAT ED G OLDEN PRINCIPLE KNOWN AS T HE DRY
RU LE; AND T HIS IS WHAT IT STAND FOR:

DON’ T REPEAT YOU RSELF

SO IF YOU FIND YOU RSELF DOING SOMET HING AG AIN AND AG AIN, IT IS FAIR TO ASSU ME T HAT T HERE
MIG HT A BET T ER WAY OF G ET T ING T HE RESU LT S YOU ’ RE LOOKING FOR …

SOME PROG RAMMERS (WIT H QU EST IONABLE MOT IVES) HAVE COME U P WIT H A WE T RU LE TOO. F IND
OU T MORE ABOU T DRY AND WET FROM WIKIPEDIA .

REMEMBER

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Flowchart of a for–loop work�ow applied to a list array.

Figure illustrates a �owchart to visualise the work�ow of an iterative process using for loops in Python. The process depicted in the
�owchart may be described as follows:

IN PY T HON, IT ERABLE IS A T ERM U SED IN REFERENCE TO VARIABLES T HAT CAN BE IT ERAT ED T HROU G H.
ANY VARIABLE T YPE T HAT CAN BE U SED IN A for LOOP WIT HOU T ANY MODIFICAT IONS IS T HEREFORE
CONSIDERED AN IT ERABLE.

MOST ARRAYS AND SEQU ENCES ARE IT ERABLE. SEE TABLE TO FIND OU T WHICH NAT IVE T YPES IN
PY T HON ARE IT ERABLE. A RU LE OF T HU MB IS T HAT IF AN ARRAY OR A SEQU ENCE IS NU MERICALLY
INDEXED (E.G . list , tuple , OR str) , IT IS AN IT ERABLE.

REMEMBER

AN IT ERABLE IS A PYT HON VARIABLE T HAT CONTAINS T HE BU ILT–IN MET HOD .__iter__() . MET HODS
START ING AND ENDING WIT H T WO U NDERSCORES (DU NDERSCORES) ARE ALSO KNOWN AS MAG IC
MET HODS IN PYT HON. SEE PYT HON DOCU MENTAT IONS FOR ADDIT IONAL INFORMAT ION.

ADVANCED TOPIC

http://127.0.0.1:7966/02-input_output.html#fig:nativeTypes
https://docs.python.org/3/tutorial/classes.html#iterators

1. A for-loop is initialised using an array or a sequence and begins its process by going through the array values from the �rst
row.

2. Iterative Process: The value of the current row is retrieved and given the alias item, which now represents a variable in the
context of the loop.

3. Repetitive Operation(s): Designated operations are performed using the value of item:

item *= 2

4. Loop Condition: The for loop automatically checks whether or not it has reached the last row of the sequence:

NO: Move onto the next row and repeat the process from #2.

YES: Exit the loop.

We write this process in Python as:

where we can see that the result for each iteration is displayed in a new line. Example outlines other such applications and expands on
repetitive operations that may be simpli�ed using for loops.

PROCESS

numbers = [3, 5, 6.3, 9, 15, 3.4]

for item in numbers:

 item *= 2

 # Display the item to see the results:

 print(item)

PYTHON

6

10

12.6

18

30

6.8

OUTPUT

Given:

Write a for loop to display each item in peptides alongside its index and length. Display the results in the following format:

Peptide XXXX at index X contains X amino acids.

A for LOOP IS ALWAYS INIT IAL ISED AS:

for variable_name in an_array:

 # An indented block of processes

 # we would like to perform on the

 # members of our array one by one.

WHERE an_array IS AN IT ERABLE VARIABLE, AND variable_name IS T HE NAME OF T HE VARIABLE WE
T EMPORARILY ASSIG N TO A MEMBER OF an_array T HAT CORRESPONDS WIT H T HE CU RRENT LOOP CYCLE
(IT ERAT ION). T HE NU MBER OF LOOP CYCLES PERFORMED BY A for LOOP IS EQU AL TO T HE LENG T H
(NU MBER OF MEMBERS) OF T HE ARRAY T HAT WE ARE IT ERAT ING T HROU G H, WHICH IN T HIS CASE IS
CALLED an_array .

YOU CAN T HINK OF EACH IT ERAT ION CYCLE AS PU LL ING OU T A ROW FROM TABLE T HAT IS OU R ARRAY
(AS EXEMPLIFIED IN SECT ION ARRAYS) AND T EMPORARILY ASSIG NING IT S CORRESPONDING VALU E TO A
VARIABLE U NT IL T HE NEXT IT ERAT ION CYCLE.

SEE SU BSECT ION L IST MEMBERS TO FIND T HE LENG T H OF AN ARRAY.

REMEMBER

DO IT YOURSELF

peptides = [

 'GYSAR',

 'HILNEKRILQAID',

 'DNSYLY'

]

PYTHON

http://127.0.0.1:7966/04-arrays.html
http://127.0.0.1:7966/04-arrays.html#listMem

Solution

for sequence in peptides:

 length = len(sequence)

 index = peptides.index(sequence)

 print('Peptide', sequence, 'at index', index, 'contains', length, 'amino acids.')

PYTHON

Peptide GYSAR at index 0 contains 5 amino acids.

Peptide HILNEKRILQAID at index 1 contains 13 amino acids.

Peptide DNSYLY at index 2 contains 6 amino acids.

OUTPUT

When using a for loop, we can also reference other variables that have already been de�ned outside of the loop block:

It is also possible to de�ne new variables inside the loop, but remember that the value of any variables de�ned inside a loop is
reset in each iteration cycle:

EXTENDED EXAMPLE OF ITERATIONS USINGforLOOPS

numbers = [3, 5, 6.3, 9, 15, 3.4]

counter = 0

for item in numbers:

 item *= 2

 # Display the item to see the results:

 print('Iteration number', counter, ':', item)

 counter += 1

PYTHON

Iteration number 0 : 6

Iteration number 1 : 10

Iteration number 2 : 12.6

Iteration number 3 : 18

Iteration number 4 : 30

Iteration number 5 : 6.8

OUTPUT

numbers = [3, 5, 6.3, 9, 15, 3.4]

counter = 0

for item in numbers:

 new_value = item * 2

 # Display the item to see the results:

 print('Iteration number', counter, ':', item, '* 2 =', new_value)

 counter += 1

PYTHON

Iteration number 0 : 3 * 2 = 6

Iteration number 1 : 5 * 2 = 10

Iteration number 2 : 6.3 * 2 = 12.6

Iteration number 3 : 9 * 2 = 18

Iteration number 4 : 15 * 2 = 30

Iteration number 5 : 3.4 * 2 = 6.8

OUTPUT

Write a for loop to display the values of a tuple de�ned as:

such that each protein is displayed on a new line and follows the phrase Protein Kinase X: as in

Protein Kinase 1: PKA

Protein Kinase 2: PKC

and so on.

Solution

Retaining the new values
It is nice to be able to manipulate and display the values of an array but in the majority of cases, we need to retain the new values and use
them later.

In such cases, we have two options:

Create a new array to store our values.
Replace the existing values with the new ones by overwriting them in the same array.

Creating a new array to store our values is very easy. All we need to do is to create a new list and add values to it in every iteration. In
other words, We start off by creating an empty list; to which we then add members using the .append() method inside our for loop.
The process of creating a new list and using the .append() method to values to an existing list are discussed in subsections Useful
Methods and mutability, respectively.

DO IT YOURSELF

protein_kinases = ('PKA', 'PKC', 'MPAK', 'GSK3', 'CK1')

PYTHON

counter = 1

for protein in protein_kinases:

 print('Protein Kinase ', counter, ': ', protein, sep='')

 counter += 1

PYTHON

Protein Kinase 1: PKA

Protein Kinase 2: PKC

Protein Kinase 3: MPAK

Protein Kinase 4: GSK3

Protein Kinase 5: CK1

OUTPUT

http://127.0.0.1:7966/04-arrays.html#subsubsec:list:usefulMethodsForList
http://127.0.0.1:7966/04-arrays.html#subsubsec:list:usefulMethodsForList
http://127.0.0.1:7966/04-arrays.html#subsubsec:list:mutability

Given:

write a for loop in which you determine the length of each sequence in peptides, and then store the results as a list of tuple items
as follows:

[('SEQUENCE_1', X), ('SEQUENCE_2', X), ...]

numbers = [-4, 0, 0.3, 5]

new_numbers = list()

for value in numbers:

 squared = value ** 2

 new_numbers.append(squared)

print('numbers:', numbers)

PYTHON

numbers: [-4, 0, 0.3, 5]

OUTPUT

print('new_numbers:', new_numbers)

PYTHON

new_numbers: [16, 0, 0.09, 25]

OUTPUT

DO IT YOURSELF

peptides = [

 'GYSAR',

 'HILNEKRILQAID',

 'DNSYLY'

]

PYTHON

Solution

The replacement method uses a slightly different approach. Essentially what we try to achieve is:

read the value of an item in an array;
manipulate the value via operations;
put the value back to the original array through item assignment and thereby replace the existing value.

We learned about modifying an existing value in a list in subsection mutability, where we discussed the concept of item assignment. The
process of replacing the original values of an array in a for loop is identical. The key to performing this process, however, is that we need
to have the correct index for the speci�c member of the array that we are trying to modify. Additionally, don’t forget that item assignment is
only possible in mutable arrays such as list. See Table to see which types of array are mutable in Python.

To perform item assignment; we can implement a variable to represent the current iteration cycle in our for loop. We do so by initialising
the variable with a value of 0, and adding 1 to its value at the end of each cycle. We can then use that variable as an index in each iteration
cycle:

peptides_with_length = list()

for sequence in peptides:

 length = len(sequence)

 item = (sequence, length)

 peptides_with_length.append(item)

PYTHON

numbers = [-4, 0, 0.5, 5]

Variable representing the

index (iteration cycle):

index = 0

for value in numbers:

 new_value = value ** 5

 # Putting it back into

 # the original array:

 numbers[index] = new_value

 # Adding one to the index for

 # the next iteration cycle:

 index += 1

print(numbers)

PYTHON

[-1024, 0, 0.03125, 3125]

OUTPUT

http://127.0.0.1:7966/04-arrays.html#subsubsec:list:mutability
http://127.0.0.1:7966/02-input_output.html#fig:nativeTypes

This is a perfectly valid approach and it is used in many programming languages. However, Python makes this process even easier by
introducing the function enumerate() . We often use this function at the initiation of a for loop. The function takes an array as an input
and as the name suggests, enumerates them; thereby simplifying the indexing process. The previous example may therefore be written
more concisely in Python as follows:

T HE enumerate() FU NCT ION ACT U ALLY RET U RNS A G ENERATOR OF tuple IT EMS EACH T IME IT IS CALLED
IN T HE CONT EXT OF A for LOOP. A G ENERATOR IS IN PRINCIPLE VERY SIMILAR TO A NORMAL ARRAY;
HOWEVER, U NL IKE AN ARRAY, T HE VALU ES OF A G ENERATOR ARE NOT EVALU AT ED BY T HE COMPU T ER
U NT IL T HE EXACT T IME AT WHICH T HEY ARE G OING TO BE U SED. T HIS IS AN IMPORTANT T ECHNIQU E IN
FU NCT IONAL PROG RAMMING KNOWN AS LAZ Y EVALU AT ION. IT IS PRIMARILY U T IL ISED TO REDU CE T HE
WORKLOAD ON T HE COMPU T ER (BOT H T HE PROCESSOR AND T HE MEMORY) BY PREVENT ING T HE
EXECU T ION OF PROCESSES T HAT MAY BE DELAYED FOR A LAT ER T IME. IN T HE CASE OF T HE enumerate()
FU NCT ION, T HE VALU ES ARE EVALU AT ED AT T HE BEG INNING OF EACH IT ERAT ION CYCLE IN A for LOOP.
LEARN MORE ABOU T LAZ Y EVALU AT ION IN WIKIPEDIA OR READ MORE ON G ENERATORS IN PYT HON IN
T HE OFFICIAL DOCU MENTAT IONS.

ADVANCED TOPIC

numbers = [-4, 0, 0.5, 5]

for index, value in enumerate(numbers):

 # Manipulating the value:

 new_value = value ** 5

 numbers[index] = new_value

print(numbers)

PYTHON

[-1024, 0, 0.03125, 3125]

OUTPUT

https://en.wikipedia.org/wiki/Lazy_evaluation
https://docs.python.org/3/howto/functional.html#generators

Given:

Display each item in characters as many times in one line as the index of that item in characters. The results should appear as
follows:

2

33

444

Solution

for-loop and conditional statements
We can use conditional statements within for loops to account for and handle different situations.

Suppose we want to �nd the smallest value (the minimum) within a list of numbers using a for loop. The work�ow of this process is
displayed as a �owchart diagram in �gure below.

DO IT YOURSELF

characters = ['1', '2', '3', '4']

PYTHON

for index, item in enumerate(characters):

 print(item * index)

PYTHON

2

33

444

OUTPUT

Given an array, we can break down the problem as follows:

Finally, we can implement the process displayed in �gure as follows:

numbers = [7, 16, 0.3, 0, 15, -4, 5, 3, 15]

minimum = numbers[0]

for value in numbers:

 if value < minimum:

 minimum = value

print('The minimum value is:', minimum)

PYTHON

The minimum value is: -4

OUTPUT

Given:

Using a for loop and a conditional statement, �nd and display the sequences in peptides that contain the amino acid serine (S) in
the following format:

Found S in XXXXX.

Solution

Sequence of numbers in for-loops
To produce a sequence of int numbers to use in a for loop, we can use the built-in range() function. The function takes in 3 positional
arguments representing start, stop, and step. Note that range() is only capable of producing a sequence of integer numbers.

DO IT YOURSELF

peptides = [

 'FAEKE',

 'CDYSK',

 'ATAMGNAPAKKDT',

 'YSFQW',

 'KRFGNLR',

 'EKKVEAPF',

 'GMGSFGRVML',

 'YSFQMGSFGRW',

 'YSFQMGSFGRW'

]

PYTHON

target = 'S'

for sequence in peptides:

 if target in sequence:

 print('Found', target, 'in', sequence)

PYTHON

Found S in CDYSK

Found S in YSFQW

Found S in GMGSFGRVML

Found S in YSFQMGSFGRW

Found S in YSFQMGSFGRW

OUTPUT

Displaying the output of a range() function is not, as one might expect, an array of numbers:

It is, however, possible to evaluate the values outside of a for loop. To do so, we need to convert the output of the function to list or a
tuple:

T HE range() FU NCT ION DOES NOT CREAT E T HE SEQU ENCE OF NU MBERS IMMEDIAT ELY. RAT HER, IT
BEHAVES IN A SIMILAR WAY AS T HE enumerate() FU NCT ION DOES (AS A G ENERATOR).

REMEMBER

range_generator = range(0, 10, 2)

print(range_generator)

PYTHON

range(0, 10, 2)

OUTPUT

range_sequence = list(range_generator)

print(range_sequence)

PYTHON

[0, 2, 4, 6, 8]

OUTPUT

T HE range() FU NCT ION IS NON-INCLU SIVE. T HAT IS , IT CREAT ES A SEQU ENCE T HAT START S FROM AND
INCLU DES T HE VALU E G IVEN AS T HE START ARG U MENT, U P TO BU T EXCLU DING T HE T HE VALU E OF T HE
END ARG U MENT. FOR INSTANCE, range (1 , 5 , 1) CREAT ES A SEQU ENCE START ING FROM 1 , WHICH IS
T HEN INCREMENT ED 1 ST EP AT A T IME RIG HT U P TO 5 , RESU LT ING IN A SEQU ENCE T HAT INCLU DES T HE
FOLLOWING NU MBERS: 1 , 2 , 3 , 4

REMEMBER

EXAMPLE: SEQUENCE COMPARISON. DOT PLOTS ANDfor-LOOPS

while-loops
In the previous, we explored for-loop mediated iterations and learned that they are exclusively applied to iterable objects — e.g. arrays
and sequences. This is because, as demonstrated in work�ow �gure, at the end of each iteration, the implicit termination condition that is
inherent in the process tests whether or not it has reached the end of the sequence it is iterating through.

It may, however, be deemed necessary to apply iterative processes based on conditions other than that embedded in the for-loop. In such
cases, we use a different class of iterations known as the while-loop.

Consider the following scenario:

We want to ask the user to enter a sequence of exactly 5 amino acids in single letter code. If the provided
sequence is more or less than 5 letters long, we would like to display a message and ask them to try
again; otherwise, we will display the process and terminate the programme.

It is impossible to write such a process using a for-loop. This is because when we initialise the iteration process, the number of loops we
need is unknown. In other words, we simply do not know how many times the user would need enter said sequence before they get it right.

To simplify the understanding of the concept, we can visualise the process in �owchart, as displayed in �gure. In the �owchart, you can see
that the only way to exit the loop is to enter a sequence of exactly 5 characters. Doing anything else — i.e. entering a different number of
letters – is tantamount to going back to be beginning of the loop. The process may be described verbally as follows:

1. Initialise the variable sequence and assign an empty string to it.

2. While the length of sequence is not equal to 5:

Ask the use to enter a new sequence.
Go back to #2.

3. Display the value of sequence.

Implementation
We start while-loop using the while syntax, immediately followed by the loop condition.

We can now implement the process displayed in �gure as follows:

sequence = str()

while len(sequence) != 5:

 sequence = input('Enter a sequence of exactly 5 amino acids: ')

print(sequence)

When executed, the above code will prompt the user to enter a value:

Enter a sequence of exactly 5 amino acids: GCGLLY

Enter a sequence of exactly 5 amino acids: GCGL

Enter a sequence of exactly 5 amino acids: GC

Enter a sequence of exactly 5 amino acids: GCGLL

GCGLL

As expected, the user is repetitively asked to enter a 5 character sequence until they supply the correct number of letters.

1. Write a script which asks the user to enter a number, then:

if the second power of the number is smaller than 10, repeat the process and ask again;

if the second power of the number is equal or greater than 10, display the original value and terminate the programme.

Hint: Don’t forget to convert the value enter by the user to an appropriate numeric type before you perform any mathematical
operations.

2. We learned in subsection Sequence of Numbers that the built-in function range() may be utilised to produce a sequence of
integer numbers. The function takes 3 input arguments in the following order: stop, start, step.

We now need a sequence of �oating point numbers with the following criteria:

stop = 10

start = 0

step = 0.5

The use of a �oating point number as step means that we cannot use range() to create the desired sequence. Write a script in
which you use a while-loop to produce a sequence of �oating point numbers with the above criteria and display the result.

The resulting sequence must be:

presented as an instance of type list;

similar to range() , the sequence must be non-inclusive — i.e. it must include the value of start, but not that of stop.

DO IT YOURSELF

Solution

value = 0

while value ** 2 < 10:

 response = input('Enter a number: ')

 value = float(response)

print(value)

Solution

stop = 10

start = 0

step = 0.5

number = start

sequence = list()

while number < stop:

 sequence.append(number)

 number += step

print(sequence)

PYTHON

[0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5]

OUTPUT

Solution

Breaking a while-loop
Unlike for-loops, it is common to break out of a while-loop mid-process. This is also known as premature termination.

To consider a situation that may necessitate such an approach, we shall modify our scenario as follows:

We want to ask the user to enter a sequence of exactly 5 amino acids. If the sequence the user provides
is more or less than 5 letters long, we would like to display a message and ask them to try again;
otherwise, we will display the sequence and terminate the programme. Additionally, the loop should be
terminated: - upon 3 failed attempts; or, - if the user entered the word exit instead of a 5 character
sequence.

In the former case, however, we would also like to display a message and inform the user that we are terminating the programme because
of 3 failed attempts.

To implement the �rst addition to our code, we will have to make the following alterations in our code:

De�ne a variable to hold the iteration cycle, then test its value at the beginning of each cycle to make sure that it is below the
designated threshold. Otherwise, we manually terminate the loop using the break syntax.

Create a conjunctive conditional statement for the while-loop to make so that it is also sensitive to our exit keyword.

A smarter solution, however, would be:

stop = 10

start = 0

step = 0.5

sequence = [start]

while sequence[-1] < stop - step:

 sequence.append(sequence[-1] + step)

print(sequence)

PYTHON

[0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5]

OUTPUT

sequence = str()

counter = 1

max_counter = 3

exit_keyword = 'exit'

while len(sequence) != 5 and sequence != exit_keyword:

 if counter == max_counter:

 sequence = "Three failed attempt - I'm done."

 break

 sequence = input('Enter a sequence of exactly 5 amino acids or [exit]: ')

 counter += 1

print(sequence)

Exercises

1. Can you explain the reason why in the example given in subsection for-loop and conditional statements we set minimum to be
equal to the �rst value of our array instead of, for instance zero or some other number?

Store your answer in a variable and display it using print() .

2. Write a script that using a for loop, calculates the sum of all numbers in an array de�ned as follows:

numbers = [0, -2.1, 1.5, 3]

and display the result as:

Sum of the numbers in the array is 2.4

3. Given an array of integer values as:

numbers = [2, 1, 3]

write a script that using for loops, displays each number in the list as many time as the number itself. The programme must
therefore display 2 twice, 1 once, and 3 three times.

4. Given a list of numbers de�ned as:

numbers = [7, 16, 0.3, 0, 15, -4, 5, 3, 15]

write a script that using at most two for loops, �nds the variance of the numbers, and display the mean, and the variance. Note
that you will need to calculate the mean as a part of your calculations to �nd the variance.

The equation for calculating the variance is:

Hint: Breaking down the problem into smaller pieces will simplify the process of translating it into code and thereby solving it:

a. Work out the Mean or (the simple average of the numbers):

b. Calculate the sum of: each number () subtracted by the Mean () and square the result.

c. Divide the resulting number by the length of number.

Display the results in the following format:

END OF CHAPTER EXERCISES

=σ2
(− μ∑n

i=1 xi)2

n

μ

μ =
∑n

i=1 xi

n

xi μ

Mean: XXXX

Variance: XXXX

Solution

Q1

Q2

Q3

answer = "Because the minimum of the array may be smaller than zero."

print(answer)

PYTHON

Because the minimum of the array may be smaller than zero.

OUTPUT

numbers = [0, -2.1, 1.5, 3]

numbers_sum = 0

for value in numbers:

 numbers_sum += value

print("Sum of the numbers in the array is", numbers_sum)

PYTHON

Sum of the numbers in the array is 2.4

OUTPUT

numbers = [2, 1, 3]

for value in numbers:

 prepped_value = [value] * value

 for number in prepped_value:

 print(number)

PYTHON

2

2

1

3

3

3

OUTPUT

Q4

numbers = [7, 16, 0.3, 0, 15, -4, 5, 3, 15]

numbers_length = len(numbers)

Calculating the "sum"

numbers_sum = 0

for value in numbers:

 numbers_sum += value

Calculating the "mean"

numbers_mean = numbers_sum / numbers_length

Calculating the "variance"

variance_denominator = numbers_length

variance_numerator = 0

for value in numbers:

 prepped_value = (value - numbers_mean) ** 2

 variance_numerator += prepped_value

numbers_variance = variance_numerator / variance_denominator

Results

print("Mean:", numbers_mean)

print("Variance:", numbers_variance)

PYTHON

Mean: 6.366666666666666

Variance: 48.919999999999995

OUTPUT

Iterations and loops are used to perform repetitive operations.

Implementation of for-loop involves 4 steps.

Conditional statements are used within loops to handle different situations.

while-loop is suited when exact number of conditions/iterations are unknown.

Content from Dictionaries

Last updated on 2024-02-27 | Edit this page

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

This chapter assumes that you are familiar with the following concepts in Python 3:

KEY POINTS

OVERVIEW

Questions

How is a dictionary de�ned in Python?

What are the ways to interact with a dictionary?

Can a dictionary be nested?

Objectives

Understanding the structure of a dictionary.

Accessing data from a dictionary.

Practising nested dictionaries to deal with complex data.

http://127.0.0.1:7966/06-dictionaries.html
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/06-dictionaries.Rmd
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/06-dictionaries.Rmd
http://127.0.0.1:7966/06-dictionaries.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1

Indentation Rule

Conditional Statements

Arrays

Loops and Iterations

Dictionary
Mapping Types – dict

Google search

StackOverflow python-3.x dictionaries

YouTube Tutorial Dictionaries

One of the most useful built-in tools in Python, dictionaries associate a set of values with a number of keys.

Think of an old fashion, paperback dictionary where we have a range of words with their de�nitions. The words are the keys, and the
de�nitions are the values that are associated with the keys. A Python dictionary works in the same way.

Consider the following scenario:

Suppose we have a number of protein kinases, and we would like to associate them with their
descriptions for future reference.

This is an example of association in arrays. We may visualise this problem as displayed in Figure.

One way to associate the proteins with their de�nitions would be to use nested arrays. However, it would make it dif�cult to retrieve the
values at a later time. This is because to retrieve the values, we would need to know the index at which a given protein is stored.

Instead of using normal arrays, in such circumstances, we use associative arrays. The most popular method to create construct an
associative array in Python is to create dictionaries or dict.

PREREQUISITE

http://127.0.0.1:7966/03-conditional_statements.html#subsubsec:indentationRule
http://127.0.0.1:7966/03-conditional_statements.html
http://127.0.0.1:7966/04-arrays.html
http://127.0.0.1:7966/05-iterations.html
https://docs.python.org/3.6/library/stdtypes.html#mapping-types-dict
https://www.google.co.uk/search?q=Dictionaries%20in%20Python%203
https://stackoverflow.com/search?q=python-3.x%20dictionaries&s=78ef2a31-bb79-485b-914d-02db1ab8e9ca
https://www.youtube.com/results?search_query=Python+3+Programming+Tutorial+-+Dictionaries

We can therefore implement the diagram displayed in Figure in Python as follows:

TO IMPLEMENT A dict IN PYT HON, WE PLACE OU R ENT RIES IN CU RLY BRACKET, SEPARAT ED U SING A
COMMA. WE SEPARAT E KEYS AND VALU ES U SING A COLON — E.G . { ‘ KEY ’ : ‘ VALU E’ }. T HE COMBINAT ION
OF DICT IONARY KEY AND IT S ASSOCIAT ING VALU E IS KNOWN AS A DICT IONARY IT EM.

REMEMBER

WHEN CONST RU CT ING A LONG dict WIT H SEVERAL IT EMS T HAT SPAN OVER SEVERAL L INES, IT IS NOT
NECESSARY TO WRIT E ONE IT EM PER L INE OR U SE INDENTAT IONS FOR EACH IT EM OR L INE. ALL WE
MU ST IS TO WRIT E T HE AS { ‘ KEY ’ : ‘ VALU E’ } IN CU RLY BRACKET S AND SEPARAT E EACH PAIR WIT H A
COMMA. HOWEVER, IT IS G OOD PRACT ICE TO WRIT E ONE IT EM PER L INE AND U SE INDENTAT IONS AS IT
MAKES IT CONSIDERABLY EASIER TO READ T HE CODE AND U NDERSTAND T HE HIERARCHY.

NOTE

protein_kinases = {

 'PKA': 'Involved in regulation of glycogen, sugar, and lipid metabolism.',

 'PKC': 'Regulates signal transduction pathways such as the Wnt pathway.',

 'CK1': 'Controls the function of other proteins through phosphorylation.'

 }

print(protein_kinases)

PYTHON

{'PKA': 'Involved in regulation of glycogen, sugar, and lipid metabolism.', 'PKC': 'Regulates signal transdu

OUTPUT

print(type(protein_kinases))

PYTHON

<class 'dict'>

OUTPUT

Use Universal Protein Resource (UniProt) to �nd the following proteins for humans: - Axin-1 - Rhodopsin

Construct a dictionary for these proteins and the number amino acids for each of them. The keys should represent the name of the
protein. Display the result.

Solution

Now that we have created a dictionary; we can test whether or not a speci�c key exists our dictionary:

DO IT YOURSELF

proteins = {

 'Axin-1': 862,

 'Rhodopsin': 348

 }

print(proteins)

PYTHON

{'Axin-1': 862, 'Rhodopsin': 348}

OUTPUT

'CK1' in protein_kinases

PYTHON

True

OUTPUT

'GSK3' in protein_kinases

PYTHON

False

OUTPUT

https://uniprot.org/

Using the dictionary you created in Do it Yourself, test to see whether or not a protein called ERK exists as a key in your dictionary?
Display the result as a Boolean value.

Solution

Interacting with a dictionary
We have already learnt that in programming, the more explicit our code, the better it is. Interacting with dictionaries in Python is very easy,
coherent, and explicit. This makes them a powerful tool that we can exploit for different purposes.

In arrays, speci�cally in list and tuple, we routinely use indexing techniques to retrieve values. In dictionaries, however, we use keys to do
that. Because we can de�ne the keys of a dictionary ourselves, we no longer have to rely exclusively on numeric indices.

As a result, we can retrieve the values of a dictionary using their respective keys as follows:

However, if we attempt to retrieve the value for a key that does not exist in our dict, a KeyError will be raised:

DO IT YOURSELF

print('ERK' in proteins)

PYTHON

False

OUTPUT

print(protein_kinases['CK1'])

PYTHON

Controls the function of other proteins through phosphorylation.

OUTPUT

'GSK3' in protein_kinases

PYTHON

False

OUTPUT

print(protein_kinases['GSK3'])

PYTHON

Implement a dict to represent the following set of information:

Cystic Fibrosis:

Full Name Gene Type

Cystic �brosis transmembrane conductance regulator CFTR Membrane
Protein

Using the dictionary you implemented, retrieve and display the gene associated with cystic �brosis.

Solution

If we attempt to construct a dict using a mutable value as key, a TypeError will be raised.

For instance, list is a mutable type and therefore cannot be used as a key:

Error: KeyError: 'GSK3'

ERROR

DO IT YOURSELF

cystic_fibrosis = {

 'full name': 'Cystic fibrosis transmembrane conductance regulator',

 'gene': 'CFTR',

 'type': 'Membrane Protein'

 }

print(cystic_fibrosis['gene'])

PYTHON

CFTR

OUTPUT

WHILST T HE VALU ES IN A dict CAN BE OF VIRT U ALLY ANY T YPE SU PPORT ED IN PYT HON, T HE KEYS MAY
ONLY BE DEFINED U SING IMMU TABLE T YPES.

TO FIND OU T WHICH T YPES ARE IMMU TABLE, SEE TABLE. ADDIT IONALLY, T HE KEYS IN A DICT IONARY
MU ST BE U NIQU E.

REMEMBER

http://127.0.0.1:7966/02-input_output.html#fig:nativeTypes

But we can use any immutable type as a key:

If we de�ne a key more than once, the Python interpreter constructs the entry in dict using the last instance.

In the following example, we repeat the key ‘pathway’ twice; and as expected, the interpreter only uses the last instance, which in this case
represents the value ‘Canonical’:

test_dict = {

 ['a', 'b']: 'some value'

 }

PYTHON

Error: TypeError: unhashable type: 'list'

ERROR

test_dict = {

 'ab': 'some value'

 }

print(test_dict)

PYTHON

{'ab': 'some value'}

OUTPUT

test_dict = {

 ('a', 'b'): 'some value'

 }

print(test_dict)

PYTHON

{('a', 'b'): 'some value'}

OUTPUT

signal = {

 'name': 'Wnt',

 'pathway': 'Non-Canonical', # first instance

 'pathway': 'Canonical' # second instance

 }

print(signal)

PYTHON

Mutability
Dictionaries are mutable. This means that we can alter their contents. We can make any alterations to a dictionary as long as we use
immutable values for the keys.

Suppose we have a dictionary stored in a variable called protein, holding some information about a speci�c protein:

We can add new items to our dictionary or alter the existing ones:

We can also alter an existing value in a dictionary using its key. To do so, we simply access the value using its key, and treat it as a normal
variable; i.e. the same way we do with members of a list:

{'name': 'Wnt', 'pathway': 'Canonical'}

OUTPUT

protein = {

 'full name': 'Cystic fibrosis transmembrane conductance regulator',

 'alias': 'CFTR',

 'gene': 'CFTR',

 'type': 'Membrane Protein',

 'common mutations': ['Delta-F508', 'G542X', 'G551D', 'N1303K']

 }

PYTHON

Adding a new item:

protein['chromosome'] = 7

print(protein)

print(protein['chromosome'])

PYTHON

{'full name': 'Cystic fibrosis transmembrane conductance regulator', 'alias': 'CFTR', 'gene': 'CFTR', 'type

7

OUTPUT

print(protein['common mutations'])

PYTHON

['Delta-F508', 'G542X', 'G551D', 'N1303K']

OUTPUT

protein['common mutations'].append('W1282X')

print(protein)

PYTHON

Implement the following dictionary:

signal = {'name': 'Wnt', 'pathway': 'Non-Canonical'}}

with respect to signal:

Correct the value of pathway to “Canonical”;

Add a new item to the dictionary to represent the receptors for the canonical pathway as “Frizzled” and “LRP”.

Display the altered dictionary as the �nal result.

Solution

{'full name': 'Cystic fibrosis transmembrane conductance regulator', 'alias': 'CFTR', 'gene': 'CFTR', 'type

OUTPUT

DO IT YOURSELF

signal = {'name': 'Wnt', 'pathway': 'Non-Canonical'}

signal['pathway'] = 'Canonical'

signal['receptors'] = ('Frizzled', 'LRP')

print(signal)

PYTHON

{'name': 'Wnt', 'pathway': 'Canonical', 'receptors': ('Frizzled', 'LRP')}

OUTPUT

Because the keys are immutable, they cannot be altered. However, we can get around this limitation by introducing a new key and
assigning the values of the old key to the new one. Once we do that, we can go ahead and remove the old item. The easiest way to remove
an item from a dictionary is to use the syntax del :

We can simplify the above operation using the .pop() method, which removes the speci�ed key from a dictionary and returns any values
associated with it:

DISPLAYING AN ENT IRE DICT IONARY U SING T HE print() FU NCT ION CAN LOOK A L IT T LE MESSY
BECAU SE IT IS NOT PROPERLY ST RU CT U RED. T HERE IS , HOWEVER, AN EXT ERNAL L IBRARY CALLED
pprint (PRET T Y-PRINT) T HAT BEHAVES IN VERY SIMILAR WAY TO T HE DEFAU LT print() FU NCT ION,
BU T ST RU CT U RES DICT IONARIES AND OT HER ARRAYS IN A MORE PRESENTABLE WAY BEFORE
DISPLAYING T HEM. WE DO NOT DISCU SS ``PRET T Y-PRINT ’ ’ IN T HIS COU RSE, BU T IT IS A PART OF
PY T HON’ S DEFAU LT L IBRARY AND IS T HEREFORE INSTALLED WIT H PYT HON AU TOMAT ICALLY. TO LEARN
MORE IT, HAVE A READ T HROU G H T HE OFFICIAL DOCU MENTAT IONS FOR T HE L IBRARY AND REVIEW T HE
EXAMPLES.

ADVANCED TOPIC

Creating a new key and assigning to it the

values of the old key:

protein['human chromosome'] = protein['chromosome']

print(protein)

PYTHON

{'full name': 'Cystic fibrosis transmembrane conductance regulator', 'alias': 'CFTR', 'gene': 'CFTR', 'type

OUTPUT

Now we remove the old item from the dictionary:

del protein['chromosome']

print(protein)

PYTHON

{'full name': 'Cystic fibrosis transmembrane conductance regulator', 'alias': 'CFTR', 'gene': 'CFTR', 'type

OUTPUT

protein['common mutations in caucasians'] = protein.pop('common mutations')

print(protein)

PYTHON

https://docs.python.org/3/library/pprint.html#module-pprint
https://docs.python.org/3/library/pprint.html#example

Implement a dictionary as:

with respect to signal:

Change the key name from ‘pdb’ to ‘pdb id’ using the .pop() method.

Write a code to �nd out whether the dictionary:

contains the new key (i.e. ‘pdb id’).

con�rm that it no longer contains the old key (i.e. ‘pdb’)

If both conditions are met, display:

Contains the new key, but not the old one.

Otherwise:

Failed to alter the dictionary.

{'full name': 'Cystic fibrosis transmembrane conductance regulator', 'alias': 'CFTR', 'gene': 'CFTR', 'type

OUTPUT

DO IT YOURSELF

signal = {'name': 'Beta-Galactosidase', 'pdb': '4V40'}

PYTHON

Solution

Nested dictionaries
As explained earlier the section, dictionaries are amongst the most powerful built-in tools in Python. It is possible to construct nested
dictionaries to organise data in a hierarchical fashion. This useful technique is outlined extensively in example.

It is very easy to implement nested dictionaries:

and we follow similar principles to access, alter, or remove the values stored in nested dictionaries:

signal = {

 'name': 'Beta-Galactosidase',

 'pdb': '4V40'

}

signal['pdb id'] = signal.pop('pdb')

if 'pdb id' in signal and 'pdb' not in signal:

 print('Contains the new key, but not the old one.')

else:

 print('Failed to alter the dictionary.')

PYTHON

Contains the new key, but not the old one.

OUTPUT

Parent dictionary

pkc_family = {

 # Child dictionary A:

 'conventional': {

 'note': 'Require DAG, Ca2+, and phospholipid for activation.',

 'types': ['alpha', 'beta-1', 'beta-2', 'gamma']

 },

 # Child dictionary B:

 'atypical': {

 'note': (

 'Require neither Ca2+ nor DAG for'

 'activation (require phosphatidyl serine).'

),

 'types': ['iota', 'zeta']

 }

}

PYTHON

print(pkc_family)

PYTHON

{'conventional': {'note': 'Require DAG, Ca2+, and phospholipid for activation.', 'types': ['alpha', 'beta-1

OUTPUT

print(pkc_family['atypical'])

PYTHON

{'note': 'Require neither Ca2+ nor DAG foractivation (require phosphatidyl serine).', 'types': ['iota', 'zet

OUTPUT

print(pkc_family['conventional']['note'])

PYTHON

Require DAG, Ca2+, and phospholipid for activation.

OUTPUT

print(pkc_family['conventional']['types'])

PYTHON

['alpha', 'beta-1', 'beta-2', 'gamma']

OUTPUT

print(pkc_family['conventional']['types'][2])

PYTHON

beta-2

OUTPUT

apkc_types = pkc_family['conventional']['types']

print(apkc_types[1])

PYTHON

beta-1

OUTPUT

Implement the following table of genetic disorders as a nested dictionary:

Full Name Gene Type

Cystic fibrosis Cystic �brosis
transmembrane

conductance
regulator

CFTR Membrane
Protein

Xeroderma pigmentosum A DNA repair
protein

complementing
XP-A cells

XPA Nucleotide
excision
repair

Haemophilia A Haemophilia A F8 Factor VIII
Blood-
clotting
protein

Using the dictionary, display the gene for Haemophilia A.

Solution

DO IT YOURSELF

genetic_diseases = {

 'Cystic fibrosis': {

 'name': 'Cystic fibrosis transmembrane conductance regulator',

 'gene': 'CFTR',

 'type': 'Membrane Protein'

 },

 'Xeroderma pigmentosum A': {

 'name': 'DNA repair protein complementing XP-A cells',

 'gene': 'XPA',

 'type': 'Nucleotide excision repair'

 },

 'Haemophilia A': {

 'name': 'Haemophilia A',

 'gene': 'F8',

 'type': 'Factor VIII Blood-clotting protein'

 }

}

print(genetic_diseases['Haemophilia A']['gene'])

PYTHON

F8

OUTPUT

We would like to store and analyse the structure of several proteins involved in the Lac operon. To do so, we create a Python dict
to help us organise our data.

We start off by creating an empty dictionary that will store our structures:

We then move onto depositing our individual entries to structure by adding new items to it.

Each item has a key that represents the name of the protein we are depositing, and a value that is itself a dictionary consisting of
information regarding the structure of that protein:

Dictionaries don’t have to be homogeneous. In other words, there can be different items in each entry.

For instance, the ‘LacY’ protein contains an additional key entitled ‘note’:

EXAMPLE: NESTED DICTIONARIES IN PRACTICE

structures = dict()

PYTHON

structures['Beta-Galactosidase'] = {

 'pdb id': '4V40',

 'deposit date': '1994-07-18',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 2.5,

 'authors': (

 'Jacobson, R.H.', 'Zhang, X.',

 'Dubose, R.F.', 'Matthews, B.W.'

)

}

PYTHON

structures['Lactose Permease'] = {

 'pdb id': '1PV6',

 'deposit data': '2003-06-23',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 3.5,

 'authors': (

 'Abramson, J.', 'Smirnova, I.', 'Kasho, V.',

 'Verner, G.', 'Kaback, H.R.', 'Iwata, S.'

)

}

PYTHON

The variable structure which is an instance of type dict, is now a nested dictionary:

We know that we can extract information from our nested dict just like we would with any other dict:

structures['LacY'] = {

 'pdb id': '2Y5Y',

 'deposit data': '2011-01-19',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 3.38,

 'note': 'in complex with an affinity inactivator',

 'authors': (

 'Chaptal, V.', 'Kwon, S.', 'Sawaya, M.R.',

 'Guan, L.', 'Kaback, H.R.', 'Abramson, J.'

)

}

PYTHON

print(structures)

PYTHON

{'Beta-Galactosidase': {'pdb id': '4V40', 'deposit date': '1994-07-18', 'organism': 'Escherichia coli',

OUTPUT

print(structures['Beta-Galactosidase'])

PYTHON

{'pdb id': '4V40', 'deposit date': '1994-07-18', 'organism': 'Escherichia coli', 'method': 'x-ray', 'res

OUTPUT

print(structures['Beta-Galactosidase']['method'])

PYTHON

x-ray

OUTPUT

print(structures['Beta-Galactosidase']['authors'])

PYTHON

Sometimes, especially when creating longer dictionaries, it might be easier to store individual entries in a variable beforehand and
add them to the parent dictionary later on.

Note that our parent dictionary in this case is represented by the variable structure.

We can then use the .update() method to update our structures dictionary:

We sometimes need to see what keys our dictionary contains. To obtain an array of keys, we use the method .keys() as follows:

('Jacobson, R.H.', 'Zhang, X.', 'Dubose, R.F.', 'Matthews, B.W.')

OUTPUT

print(structures['Beta-Galactosidase']['authors'][0])

PYTHON

Jacobson, R.H.

OUTPUT

entry = {

 'Lac Repressor': {

 'pdb id': '1LBI',

 'deposit data': '1996-02-17',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 2.7,

 'authors': (

 'Lewis, M.', 'Chang, G.', 'Horton, N.C.',

 'Kercher, M.A.', 'Pace, H.C.', 'Lu, P.'

)

 }

}

PYTHON

structures.update(entry)

print(structures['Lac Repressor'])

PYTHON

{'pdb id': '1LBI', 'deposit data': '1996-02-17', 'organism': 'Escherichia coli', 'method': 'x-ray', 'res

OUTPUT

print(structures.keys())

PYTHON

Likewise, we can also obtain an array of values in a dictionary using the .values() method:

We can then extract speci�c information to conduct an analysis. Note that the len() function in this context returns the number of
keys in the parent dictionary only.

Useful methods for dictionary
Now we use some snippets to demonstrate some of the useful methods associated with dict in Python.

Given a dictionary as:

dict_keys(['Beta-Galactosidase', 'Lactose Permease', 'LacY', 'Lac Repressor'])

OUTPUT

print(structures['LacY'].values())

PYTHON

dict_values(['2Y5Y', '2011-01-19', 'Escherichia coli', 'x-ray', 3.38, 'in complex with an affinity inact

OUTPUT

sum_resolutions = 0

res = 'resolution'

sum_resolutions += structures['Beta-Galactosidase'][res]

sum_resolutions += structures['Lactose Permease'][res]

sum_resolutions += structures['Lac Repressor'][res]

sum_resolutions += structures['LacY'][res]

total_entries = len(structures)

average_resolution = sum_resolutions / total_entries

print(average_resolution)

PYTHON

3.0199999999999996

OUTPUT

lac_repressor = {

 'pdb id': '1LBI',

 'deposit data': '1996-02-17',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 2.7,

}

PYTHON

We can create an array of all items in the dictionary using the .items() method:

Similar to the enumerate() function (discussed in subsection DIY), the .items() method also returns an array of tuple members. Each
tuple itself consists of 2 members, and is structured as (‘key’: ‘value’). On that account, we can use its output in the context of a for–loop as
follows:

Try .items() on a nested dict and see how it works.

print(lac_repressor.items())

PYTHON

dict_items([('pdb id', '1LBI'), ('deposit data', '1996-02-17'), ('organism', 'Escherichia coli'), ('method',

OUTPUT

for key, value in lac_repressor.items():

 print(key, value, sep=': ')

PYTHON

pdb id: 1LBI

deposit data: 1996-02-17

organism: Escherichia coli

method: x-ray

resolution: 2.7

OUTPUT

DO IT YOURSELF

Solution

We learned earlier that if we ask for a key that is not in the dict, a KeyError will be raised. If we anticipate this, we can handle it using the

.get() method. The method takes in the key and searches the dictionary to �nd it. If found, the associating value is returned. Otherwise,
the method returns None by default. We can also pass a second value to .get() to replace None in cases that the requested key does not
exist:

nested_dict = {

 'L1-a': {

 'L2-Ka': 'L2_Va',

 'L2-Kb': 'L2_Vb',

 },

 'L1-b': {

 'L2-Kc': 'L2_Vc',

 'L2-Kd': 'L3_Vd'

 },

 'L3-c': 'L3_V'

}

print(nested_dict.items())

PYTHON

dict_items([('L1-a', {'L2-Ka': 'L2_Va', 'L2-Kb': 'L2_Vb'}), ('L1-b', {'L2-Kc': 'L2_Vc', 'L2-Kd': 'L3_Vd'

OUTPUT

print(lac_repressor['gene'])

PYTHON

Error: KeyError: 'gene'

ERROR

print(lac_repressor.get('gene'))

PYTHON

None

OUTPUT

print(lac_repressor.get('gene', 'Not found...'))

PYTHON

Implement the lac_repressor dictionary and try to extract the values associated with the following keys:

organism

authors

subunits

method

If a key does not exist in the dictionary, display No entry instead.

Display the results in the following format:

organism: XXX

authors: XXX

Solution

Not found...

OUTPUT

DO IT YOURSELF

lac_repressor = {

 'pdb id': '1LBI',

 'deposit data': '1996-02-17',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 2.7,

}

requested_keys = ['organism', 'authors', 'subunits', 'method']

for key in requested_keys:

 lac_repressor.get(key, 'No entry')

PYTHON

'Escherichia coli'

'No entry'

'No entry'

'x-ray'

OUTPUT

for-loop and dictionary
Dictionaries and for-loops create a powerful combination. We can leverage the accessibility of dictionary values through speci�c keys that
we de�ne ourselves in a loop to extract data iteratively and repeatedly.

One of the most useful tools that we can create using nothing more than a for-loop and a dictionary, in only a few lines of code, is a
sequence converter.

Here, we are essentially iterating through a sequence of DNA nucleotides (sequence), extracting one character per loop cycle from our
string (nucleotide). We then use that character as a key to retrieve its corresponding value from our a dictionary (dna2rna). Once we get the
value, we add it to the variable that we initialised using an empty string outside the scope of our for-loop (rna_sequence) as discussed in
subsection. At the end of the process, the variable rna_sequence will contain a converted version of our sequence.

sequence = 'CCCATCTTAAGACTTCACAAGACTTGTGAAATCAGACCACTGCTCAATGCGGAACGCCCG'

dna2rna = {"A": "U", "T": "A", "C": "G", "G": "C"}

rna_sequence = str() # Creating an empty string.

for nucleotide in sequence:

 rna_sequence += dna2rna[nucleotide]

print('DNA:', sequence)

print('RNA:', rna_sequence)

PYTHON

DNA: CCCATCTTAAGACTTCACAAGACTTGTGAAATCAGACCACTGCTCAATGCGGAACGCCCG

RNA: GGGUAGAAUUCUGAAGUGUUCUGAACACUUUAGUCUGGUGACGAGUUACGCCUUGCGGGC

OUTPUT

We know that in reverse transcription, RNA nucleotides are converted to their complementary DNA as shown:

Type Direction Nucleotides

RNA 5’…’ U A G C

cDNA 5’…’ A T C G

with that in mind:

1. Use the table to construct a dictionary for reverse transcription, and another dictionary for the conversion of cDNA to DNA.

2. Using the appropriate dictionary, convert the following mRNA (exon) sequence for human G protein-coupled receptor to its
cDNA.

DO IT YOURSELF

human_gpcr = (

 'AUGGAUGUGACUUCCCAAGCCCGGGGCGUGGGCCUGGAGAUGUACCCAGGCACCGCGCAGCCUGCGGCCCCCAACACCACCUC'

 'CCCCGAGCUCAACCUGUCCCACCCGCUCCUGGGCACCGCCCUGGCCAAUGGGACAGGUGAGCUCUCGGAGCACCAGCAGUACG'

 'UGAUCGGCCUGUUCCUCUCGUGCCUCUACACCAUCUUCCUCUUCCCCAUCGGCUUUGUGGGCAACAUCCUGAUCCUGGUGGUG'

 'AACAUCAGCUUCCGCGAGAAGAUGACCAUCCCCGACCUGUACUUCAUCAACCUGGCGGUGGCGGACCUCAUCCUGGUGGCCGA'

 'CUCCCUCAUUGAGGUGUUCAACCUGCACGAGCGGUACUACGACAUCGCCGUCCUGUGCACCUUCAUGUCGCUCUUCCUGCAGG'

 'UCAACAUGUACAGCAGCGUCUUCUUCCUCACCUGGAUGAGCUUCGACCGCUACAUCGCCCUGGCCAGGGCCAUGCGCUGCAGC'

 'CUGUUCCGCACCAAGCACCACGCCCGGCUGAGCUGUGGCCUCAUCUGGAUGGCAUCCGUGUCAGCCACGCUGGUGCCCUUCAC'

 'CGCCGUGCACCUGCAGCACACCGACGAGGCCUGCUUCUGUUUCGCGGAUGUCCGGGAGGUGCAGUGGCUCGAGGUCACGCUGG'

 'GCUUCAUCGUGCCCUUCGCCAUCAUCGGCCUGUGCUACUCCCUCAUUGUCCGGGUGCUGGUCAGGGCGCACCGGCACCGUGGG'

 'CUGCGGCCCCGGCGGCAGAAGGCGCUCCGCAUGAUCCUCGCGGUGGUGCUGGUCUUCUUCGUCUGCUGGCUGCCGGAGAACGU'

 'CUUCAUCAGCGUGCACCUCCUGCAGCGGACGCAGCCUGGGGCCGCUCCCUGCAAGCAGUCUUUCCGCCAUGCCCACCCCCUCA'

 'CGGGCCACAUUGUCAACCUCACCGCCUUCUCCAACAGCUGCCUAAACCCCCUCAUCUACAGCUUUCUCGGGGAGACCUUCAGG'

 'GACAAGCUGAGGCUGUACAUUGAGCAGAAAACAAAUUUGCCGGCCCUGAACCGCUUCUGUCACGCUGCCCUGAAGGCCGUCAU'

 'UCCAGACAGCACCGAGCAGUCGGAUGUGAGGUUCAGCAGUGCCGUG'

)

PYTHON

Solution

Q2

Summary
In this section we talked about dictionaries, which are one the most powerful built-in types in Python. We learned:

how to create dictionaries in Python,
methods to alter or manipulate normal and nested dictionaries,
two different techniques for changing an existing key,
examples on how dictionaries help us organise our data and retrieve them when needed,

Finally, we also learned that we can create an iterable (discussed in section) from dictionary keys or values using the .key() , the

.values() , or the .items() methods.

Exercises

mrna2cdna = {

 'U': 'A',

 'A': 'T',

 'G': 'C',

 'C': 'G'

}

cdna2dna = {

 'A': 'T',

 'T': 'A',

 'C': 'G',

 'G': 'C'

}

PYTHON

cdna = str()

for nucleotide in human_gpcr:

 cdna += mrna2cdna[nucleotide]

print(cdna)

PYTHON

TACCTACACTGAAGGGTTCGGGCCCCGCACCCGGACCTCTACATGGGTCCGTGGCGCGTCGGACGCCGGGGGTTGTGGTGGAGGGGGCTCGAGTTGGACAGGGT

OUTPUT

We know that the process of protein translation starts by transcribing a gene from DNA to RNA nucleotides, followed by
translating the RNA codons to protein.

Conventionally, we write a DNA sequence from the 5’-end to the 3’-end. The transcription process, however, starts from the 3’-end
of a gene to the 5’-end (anti-sense strand), resulting in a sense mRNA sequence complementing the sense DNA strand. This is
because RNA polymerase can only add nucleotides to the 3’-end of the growing mRNA chain, which eliminates the need for the
Okazaki fragments as seen in DNA replication.

Example: The DNA sequence ATGTCTAAA is transcribed into AUGUCUAAA.

Given a conversion table:

and this 5’- to 3’-end DNA sequence of 717 nucleotides for the Green Fluorescent Protein (GFP) mutant 3 extracted from Aequorea
victoria:

Use the DNA sequence and the conversion table to:

1. Write a Python script to transcribe this sequence to mRNA as it occurs in a biological organism. That is, determine the
complimentary DNA �rst, and use that to work out the mRNA.

2. Use the following dictionary in a Python script to obtain the translation (protein sequence) of the Green Fluorescent Protein
using the mRNA sequence you obtained.

END OF CHAPTER EXERCISES

dna_sequence = (

 'ATGTCTAAAGGTGAAGAATTATTCACTGGTGTTGTCCCAATTTTGGTTGAATTAGATGGTGATGTTAATGGT'

 'CACAAATTTTCTGTCTCCGGTGAAGGTGAAGGTGATGCTACTTACGGTAAATTGACCTTAAAATTTATTTGT'

 'ACTACTGGTAAATTGCCAGTTCCATGGCCAACCTTAGTCACTACTTTCGGTTATGGTGTTCAATGTTTTGCT'

 'AGATACCCAGATCATATGAAACAACATGACTTTTTCAAGTCTGCCATGCCAGAAGGTTATGTTCAAGAAAGA'

 'ACTATTTTTTTCAAAGATGACGGTAACTACAAGACCAGAGCTGAAGTCAAGTTTGAAGGTGATACCTTAGTT'

 'AATAGAATCGAATTAAAAGGTATTGATTTTAAAGAAGATGGTAACATTTTAGGTCACAAATTGGAATACAAC'

 'TATAACTCTCACAATGTTTACATCATGGCTGACAAACAAAAGAATGGTATCAAAGTTAACTTCAAAATTAGA'

 'CACAACATTGAAGATGGTTCTGTTCAATTAGCTGACCATTATCAACAAAATACTCCAATTGGTGATGGTCCA'

 'GTCTTGTTACCAGACAACCATTACTTATCCACTCAATCTGCCTTATCCAAAGATCCAAACGAAAAGAGAGAC'

 'CACATGGTCTTGTTAGAATTTGTTACTGCTGCTGGTATTACCCATGGTATGGATGAATTGTACAAATAA'

)

PYTHON

https://en.wikipedia.org/wiki/Okazaki_fragments
https://en.wikipedia.org/wiki/Green_fluorescent_protein
https://en.wikipedia.org/wiki/Aequorea_victoria
https://en.wikipedia.org/wiki/Aequorea_victoria

codon2aa = {

 "UUU": "F", "UUC": "F", "UUA": "L", "UUG": "L", "CUU": "L",

 "CUC": "L", "CUA": "L", "CUG": "L", "AUU": "I", "AUC": "I",

 "AUA": "I", "GUU": "V", "GUC": "V", "GUA": "V", "GUG": "V",

 "UCU": "S", "UCC": "S", "UCA": "S", "UCG": "S", "AGU": "S",

 "AGC": "S", "CCU": "P", "CCC": "P", "CCA": "P", "CCG": "P",

 "ACU": "T", "ACC": "T", "ACA": "T", "ACG": "T", "GCU": "A",

 "GCC": "A", "GCA": "A", "GCG": "A", "UAU": "Y", "UAC": "Y",

 "CAU": "H", "CAC": "H", "CAA": "Q", "CAG": "Q", "AAU": "N",

 "AAC": "N", "AAA": "K", "AAG": "K", "GAU": "D", "GAC": "D",

 "GAA": "E", "GAG": "E", "UGU": "C", "UGC": "C", "UGG": "W",

 "CGU": "R", "CGC": "R", "CGA": "R", "CGG": "R", "AGA": "R",

 "AGG": "R", "GGU": "G", "GGC": "G", "GGA": "G", "GGG": "G",

 "AUG": "<Met>", "UAA": "<STOP>", "UAG": "<STOP>", "UGA": "<STOP>"

}

PYTHON

Solution

Q1

dna_sequence = (

 'ATGTCTAAAGGTGAAGAATTATTCACTGGTGTTGTCCCAATTTTGGTTGAATTAGATGGTGATGTTAATGGT'

 'CACAAATTTTCTGTCTCCGGTGAAGGTGAAGGTGATGCTACTTACGGTAAATTGACCTTAAAATTTATTTGT'

 'ACTACTGGTAAATTGCCAGTTCCATGGCCAACCTTAGTCACTACTTTCGGTTATGGTGTTCAATGTTTTGCT'

 'AGATACCCAGATCATATGAAACAACATGACTTTTTCAAGTCTGCCATGCCAGAAGGTTATGTTCAAGAAAGA'

 'ACTATTTTTTTCAAAGATGACGGTAACTACAAGACCAGAGCTGAAGTCAAGTTTGAAGGTGATACCTTAGTT'

 'AATAGAATCGAATTAAAAGGTATTGATTTTAAAGAAGATGGTAACATTTTAGGTCACAAATTGGAATACAAC'

 'TATAACTCTCACAATGTTTACATCATGGCTGACAAACAAAAGAATGGTATCAAAGTTAACTTCAAAATTAGA'

 'CACAACATTGAAGATGGTTCTGTTCAATTAGCTGACCATTATCAACAAAATACTCCAATTGGTGATGGTCCA'

 'GTCTTGTTACCAGACAACCATTACTTATCCACTCAATCTGCCTTATCCAAAGATCCAAACGAAAAGAGAGAC'

 'CACATGGTCTTGTTAGAATTTGTTACTGCTGCTGGTATTACCCATGGTATGGATGAATTGTACAAATAA'

)

codon2aa = {

 "UUU": "F", "UUC": "F", "UUA": "L", "UUG": "L", "CUU": "L",

 "CUC": "L", "CUA": "L", "CUG": "L", "AUU": "I", "AUC": "I",

 "AUA": "I", "GUU": "V", "GUC": "V", "GUA": "V", "GUG": "V",

 "UCU": "S", "UCC": "S", "UCA": "S", "UCG": "S", "AGU": "S",

 "AGC": "S", "CCU": "P", "CCC": "P", "CCA": "P", "CCG": "P",

 "ACU": "T", "ACC": "T", "ACA": "T", "ACG": "T", "GCU": "A",

 "GCC": "A", "GCA": "A", "GCG": "A", "UAU": "Y", "UAC": "Y",

 "CAU": "H", "CAC": "H", "CAA": "Q", "CAG": "Q", "AAU": "N",

 "AAC": "N", "AAA": "K", "AAG": "K", "GAU": "D", "GAC": "D",

 "GAA": "E", "GAG": "E", "UGU": "C", "UGC": "C", "UGG": "W",

 "CGU": "R", "CGC": "R", "CGA": "R", "CGG": "R", "AGA": "R",

 "AGG": "R", "GGU": "G", "GGC": "G", "GGA": "G", "GGG": "G",

 "AUG": "<Met>", "UAA": "<STOP>", "UAG": "<STOP>", "UGA": "<STOP>"

}

dna2cdna = {

 'A': 'T',

 'C': 'G',

 'G': 'C',

 'T': 'A'

}

dna2mrna = {

 'A': 'U',

 'T': 'A',

 'G': 'C',

 'C': 'G'

}

Transcription

m_rna = str()

for nucleotide in dna_sequence:

 # DNA to cDNA

 c_dna = dna2cdna[nucleotide]

 # cDNA to mRNA

 m_rna += dna2mrna[c_dna]

PYTHON

print('mRNA:', m_rna)

Translation:

mRNA: AUGUCUAAAGGUGAAGAAUUAUUCACUGGUGUUGUCCCAAUUUUGGUUGAAUUAGAUGGUGAUGUUAAUGGUCACAAAUUUUCUGUCUCCGGUGAAGG

OUTPUT

mrna_len = len(m_rna)

codon_len = 3

protein = str()

for index in range(0, mrna_len, codon_len):

 codon = m_rna[index: index + codon_len]

 protein += codon2aa[codon]

print('Protein:', protein)

INTERMEDIATE-LEVEL TWIST (Alternative answer):

One can also combine the two processes.

#

Advantages:

- One for-loop.

- No use of `range()`.

- Almost twice as fast (half as many iterations).

PYTHON

Protein: <Met>SKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFGYGVQCFARYPDH<Met>KQHDFFKSA

OUTPUT

m_rna = str()

protein = str()

codon = str()

for nucleotide in dna_sequence:

 # DNA to cDNA

 c_dna = dna2cdna[nucleotide]

 # Transcription:

 transcribed_nucleotide = dna2mrna[c_dna]

 m_rna += transcribed_nucleotide

 # Translation process:

 # Retaining the residue to construct triplets.

 codon += transcribed_nucleotide

 # Check if this is a triplet (a codon):

 if len(codon) == 3:

 # Convert to amino acid and store:

 protein += codon2aa[codon]

 # Reset the codon to an empty string:

 codon = str()

print('mRNA:', m_rna)

PYTHON

mRNA: AUGUCUAAAGGUGAAGAAUUAUUCACUGGUGUUGUCCCAAUUUUGGUUGAAUUAGAUGGUGAUGUUAAUGGUCACAAAUUUUCUGUCUCCGGUGAAGG

OUTPUT

print('Protein:', protein)

PYTHON

Protein: <Met>SKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFGYGVQCFARYPDH<Met>KQHDFFKSA

OUTPUT

Dictionaries associate a set of values with a number of keys.

keys are used to access the values of a dictionary.

Dictionaries are mutable.

Nested dictionaries are constructed to organise data in a hierarchical fashion.

Some of the useful methods to work with dictionaries are: .items() , .get()

Content from Functions

Last updated on 2024-02-27 | Edit this page

Download Chapter notebook (ipynb)

KEY POINTS

OVERVIEW

Questions

What are functions?

How are functions created?

What are optional arguments?

What makes functions powerful?

Objectives

Develop concepts of using functions.

Understanding different ways of creating functions.

Explaining input arguments.

Understanding the inter-connectivity of functions.

http://127.0.0.1:7966/07-functions.html
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/07-functions.Rmd
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/07-functions.Rmd
http://127.0.0.1:7966/07-functions.ipynb

Function to create a dictionaryFunction to create a dictionary

Transcription FunctionTranscription Function

Covariance FunctionCovariance Function

This chapter assumes that you are familiar with the following concepts in Python 3:

https://www.youtube.com/watch?v=hcvGRK8FvQ8
https://www.youtube.com/watch?v=_Y6ucZYbVL4
https://www.youtube.com/watch?v=on_v5Ge80iE

Mathematical Operation

Indentation Rule

Conditional Statements

Arrays

Loops and Iterations

Functions
Defining Functions

In programming, functions are containers that incorporate some code and perform very speci�c tasks. As we learned in the �rst chapter (on
outputs), a function usually takes in one or several variables or values, processes them, and produces a speci�c result. The variable(s) given
to a function and those produced by it are referred to as input arguments, and outputs respectively.

There are different ways to create functions in Python. In this course, we will be using def to implement our functions. This is the easiest
and by far the most common method for declaring functions. The structure of a typical function de�ned using def is as follows:

PREREQUISITE

http://127.0.0.1:7966/02-input_output.html#math_ops
http://127.0.0.1:7966/03-conditional_statements.html#subsubsec:indentationRule
http://127.0.0.1:7966/03-conditional_statements.html
http://127.0.0.1:7966/04-arrays.html
http://127.0.0.1:7966/05-iterations.html
https://docs.python.org/3/tutorial/controlflow.html#defining-functions
http://127.0.0.1:7966/02-input_output.html#sub:ProducingAnOutput

We implement functions to prevent repetition in our code. It is therefore important for a function to only perform a very speci�c task, so that
it can be context-independent. You should therefore avoid incorporating separable tasks inside a single function.

Once you start creating functions for different purposes; after a while, you will have a library of ready-to-use functions to address different
needs. This is the primary principle of a popular programming paradigm known as functional programming.

So let us implement the example outline in the diagram:

T HERE ARE SEVERAL POINT S TO REMEMBER IN RELAT ION TO FU NCT IONS:

THE NAME OF A FUNCTION FOLLOWS SAME PRINCIPLES AS THAT OF ANY OTHER VARIABLE
AS DISCUSSED IN VARIABLE NAMES. THE NAME MUST BE IN LOWER-CASE CHARACTERS.

THE INPUT ARGUMENTS OF A FUNCTION — E .G. VALUE_A AND VALUE_B IN THE ABOVE
EXAMPLE; ARE ESSENTIALLY VARIABLES WHOSE SCOPE IS THE FUNCTION. THAT IS, THEY
ARE ONLY ACCESSIBLE WITHIN THE FUNCTION ITSELF, AND NOT FROM ANYWHERE ELSE IN
THE CODE.

VARIABLES DEFINED INSIDE OF A FUNCTION, SHOULD NEVER USE THE SAME NAME AS
VARIABLES DEFINED OUTSIDE OF IT; OR THEY MAY OVERRIDE EACH OTHER.

A FUNCTION DECLARED USING def SHOULD ALWAYS BE TERMINATED WITH A return

SYNTAX. ANY VALUES OR VARIABLES THAT FOLLOW return ARE REGARDED AS THE
FUNCTION’S OUTPUT.

IF WE DO NOT SPECIFY A RETURN VALUE, OR FAIL TO TERMINATE A FUNCTION USING
return ALTOGETHER, THE PYTHON INTERPRETER WILL AUTOMATICALLY TERMINATE THAT

FUNCTION WITH AN IMPLICIT return None . BE ING AN IMPLICIT PROCESS, THIS IS
GENERALLY REGARDED AS A BAD PRACTICE AND SHOULD BE AVOIDED.

REMEMBER

FU NCT IONS ARE DESIG NED TO PERFORM SPECIFIC TASKS. T HAT IS WHY IN T HE MAJORIT Y OF CASES,
T HEY ARE NAMED U SING VERBS — E.G . add() OR print() . WE U SE VERBS TO DESCRIBE AN ACT ION, A
STAT E, OR AN OCCU RRENCE IN EVERYDAY LANG U AG E. L IKEWISE, T HIS T YPE OF NOMENCLAT U RE
DESCRIBES T HE ACT ION PERFORMED BY A SPECIFIC FU NCT ION. NAME YOU R FU NCT IONS WISELY !

INTERESTING FACT

https://en.wikipedia.org/wiki/Functional_programming
http://127.0.0.1:7966/02-input_output.html#subsec:variableNames

Once implemented, we can go ahead use the function. We can do so in the same way as we do with the built-in functions such as max() or

print() :

Alternatively, we can use the name of each input argument to pass values onto them in any order. When we use the name of the input
argument explicitly, we pass the values as keyword arguments. This is particularly useful in more complex functions where there are
several input arguments.

def add(value_a, value_b):

 """

 Calculates the sum of 2 numeric values

 given as inputs.

 :param value_a: First value.

 :type value_a: int, float

 :param value_b: Second value.

 :type value_b: int, float

 :return: Sum of the two values.

 :rtype: int, float

 """

 result = value_a + value_b

 return result

PYTHON

res = add(2, 5)

print(res)

PYTHON

7

OUTPUT

WHEN CALL ING A FU NCT ION, WE SHOU LD ALWAYS PASS OU R POSIT IONAL INPU T ARG U MENT S IN T HE
ORDER T HEY ARE DEFINED IN T HE FU NCT ION DEFINIT ION, FROM LEFT TO RIG HT.

T HIS IS BECAU SE IN T HE CASE OF POSIT IONAL ARG U MENT S, AS T HE NAME SU G G EST S, T HE PYT HON
INT ERPRET ER REL IES ON T HE POSIT ION OF EACH VALU E TO IDENT IFY IT S VARIABLE NAME IN T HE
FU NCT ION SIG NAT U RE. T HE FU NCT ION SIG NAT U RE FOR OU R add FU NCT ION IS AS FOLLOWS:

add(value_a, value_b)

SO IN T HE ABOVE EXAMPLE WHERE WE SAY ADD(2 , 5) , T HE VALU E 2 IS IDENT IFIED AS T HE INPU T
ARG U MENT FOR VALU E_A, AND NOT VALU E_B. T HIS HAPPENS AU TOMAT ICALLY BECAU SE IN OU R
FU NCT ION CALL , T HE VALU E 2 IS WRIT T EN IN T HE FIRST POSIT ION, WHERE VALU E_A IS DEFINED IN OU R
FU NCT ION DECLARAT ION (SIG NAT U RE) .

REMEMBER

Let us now use keyword arguments to pass values to our add() function:

Now even if we changed the order of our arguments, the function would still be able to associate the values correctly:

res = add(value_a=2, value_b=5)

print(res)

PYTHON

7

OUTPUT

res = add(value_b=2, value_a=5)

print(res)

PYTHON

7

OUTPUT

CHOOSE T HE ORDER OF YOU R INPU T ARG U MENT WISELY. T HIS IS IMPORTANT WHEN YOU R FU NCT ION
ACCEPT S MU LT IPLE INPU T ARG U MENT .

SU PPOSE WE WANT TO DEFINE A “DIVISION” FU NCT ION. IT MAKES SENSE TO ASSU ME T HAT T HE FIRST
NU MBER PASSED TO T HE FU NCT ION WILL BE DIVIDED BY T HE SECOND NU MBER:

IT IS ALSO MU CH LESS L IKELY FOR SOMEONE TO U SE KEYWORDS TO PASS ARG U MENT S TO T HIS
FU NCT ION – T HAT IS , TO SAY:

T HAN IT IS FOR T HEM TO U SE POSIT IONAL ARG U MENT S (WIT HOU T ANY KEYWORDS), T HAT IS :

BU T IF WE U SE AN ARBIT RARY ORDER, T HEN WE RISK RU NNING INTO PROBLEMS:

IN WHICH CASE, OU R FU NCT ION WOU LD PERFORM PERFECT LY WELL IF WE U SE KEYWORD ARG U MENT S;
HOWEVER, IF WE RELY ON POSIT IONAL ARG U MENT S AND COMMON SENSE, T HEN T HE RESU LT OF T HE
DIVISION WOU LD BE CALCU LAT ED INCORRECT LY.

REMEMBER

def divide(a, b):

 return a / b

PYTHON

result = divide(a=2, b=4)

PYTHON

result = divide(2, 4)

PYTHON

def divide_bad(denominator, numerator):

 return numerator / denominator

PYTHON

result_a = divide_bad(numerator=2, denominator=4)

result_b = divide_bad(2, 4)

print(result_a == result_b)

PYTHON

False

OUTPUT

Implement a function called �nd_tata that takes in one str argument called seq and looks for the TATA-box motif inside that
sequence. Then:

if found, the function should return the index for the TATA-box as output;

if not found, the function should explicitly return None.

Example:

The function should behave as follows:

sequence = 'GCAGTGTATAGTC'

res = find_tata(sequence)

Solution

Documentations
It is essential to write short, but proper documentation for our functions. There is no correct way document a code. However, a general rule,
a good documentation should tell us:

what a function does;

the names of the input arguments, and what type each argument should be;

the output, and its type.

The documentation string, also known as the docstring, is always written inside triple quotation marks. The docstring must be the
implemented on the very �rst line following the declaration of the function to be recognised as the documentation:

DO IT YOURSELF

def find_tata(seq):

 tata_box = 'TATA'

 result = seq.find(tata_box)

 return result

PYTHON

Writing the docstring on the �rst line is important because once a function is documented; we can use help() , which is a built-in function,
to access the documentations as follows:

def add(value_a, value_b):

 """

 Calculates the sum of 2 numeric values

 given as inputs.

 :param value_a: First value.

 :type value_a: int, float

 :param value_b: Second value.

 :type value_b: int, float

 :return: Sum of the two values.

 :rtype: int, float

 """

 result = value_a + value_b

 return result

PYTHON

YOU MIG HT FEEL AS T HOU G H YOU WOU LD REMEMBER WHAT YOU R OWN FU NCT IONS DO. T HAT,
HOWEVER, IS SCARCELY T HE CASE. FU NCT IONS T HAT WE IMPLEMENT T END TO PERFORM SPECIAL IST,
AND AT T IMES, VERY COMPLEX AND INT ERCONNECT ED PROCESSES. WHILST YOU MIG HT REMEMBER
WHAT A SPECIFIC FU NCT ION DOES FOR A FEW DAYS AFT ER WRIT ING IT, YOU WOU LD ALMOST
CERTAINLY HAVE T ROU BLE REMEMBERING T HE DETAILS IN A MAT T ER OF MONT HS. AND T HAT IS NOT
EVEN CONSIDERING DETAILS REG ARDING T HE T YPE OF T HE INPU T ARG U MENT (S) AND T HOSE OF T HE
OU T PU T. IN ADDIT ION, PROG RAMMERS OFT EN SHARE T HEIR WORKS WIT H OT HER FELLOW
PROG RAMMERS; BE IT WIT H T HEIR T EAM, OR IN T HE CONT EXT OF A PU BL ICAT ION, OR IN PU BL IC
REPOSITORIES AS A CONT RIBU T ION TO T HE COMMU NIT Y. WHAT EVER T HE REASON, T HERE IS ONE
G OLDEN RU LE: A FU NCT IONALIT Y DOES NOT EXIST U NLESS IT IS DOCU MENT ED.

REMEMBER

help(add)

PYTHON

Help on function add in module __main__:

add(value_a, value_b)

 Calculates the sum of 2 numeric values

 given as inputs.

 :param value_a: First value.

 :type value_a: int, float

 :param value_b: Second value.

 :type value_b: int, float

 :return: Sum of the two values.

 :rtype: int, float

OUTPUT

For very simple functions – e.g. the function add() that we implemented above, where it is fairly obvious what are the input and output
arguments and their respective types; it is okay to simplify the docstring to something explicit and concise, such as follows:

Re-implement the function you de�ned in the previous Do it Yourself with appropriate documentations.

Solution

Optional arguments
We already know that most functions take in one or more input arguments. Sometime a function does not need all of the arguments to
perform a speci�c task.

def add(value_a, value_b):

 """value_a + value_b -> number"""

 result = value_a + value_b

 return result

PYTHON

help(add)

PYTHON

Help on function add in module __main__:

add(value_a, value_b)

 value_a + value_b -> number

OUTPUT

DO IT YOURSELF

def find_tata(seq):

 """

 Finds the location of the TATA-box,

 if one exists, in a polynucleotide

 sequence.

 :param seq: Polynucleotide sequence.

 :type seq: str

 :return: Start of the TATA-box.

 :rtype: int

 """

 tata_box = 'TATA'

 result = seq.find(tata_box)

 return result

PYTHON

An example we have already worked with is print() . We already know that this function may be utilised to display text on the screen.
However, we also know that if we use the file argument, it will behave differently in that it will write the text inside a �le instead of
displaying it on the screen. Additionally, print() has other arguments such as sep or end, which have speci�c default values of ’ ’ (a single
space) and \n (a linebreak) respectively.

To de�ne functions with optional arguments, we need to assign to them a default value. Remember that input arguments are variables with
a speci�c scope. As a result, we can treat our input argument as variables and assign them a value:

INPU T ARG U MENT S T HAT ARE NECESSARY TO CALL A SPECIFIC FU NCT ION ARE REFERRED TO AS NON-
DEFAU LT ARG U MENT S. T HOSE WHOSE DEFINIT ION IS NOT MANDATORY FOR A FU NCT ION TO BE CALLED
ARE KNOWN AS DEFAU LT OR OPT IONAL ARG U MENT S.

OPT IONAL ARG U MENT S MAY ONLY BE DEFINED AFT ER NON-DEFAU LT ARG U MENT S (IF ANY) . IF T HIS
ORDER IS NOT RESPECT ED, A SyntaxError WILL BE RAISED.

REMEMBER

T HE DEFAU LT VALU E DEFINED FOR OPT IONAL ARG U MENT S CAN IN T HEORY BE AN INSTANCE OF ANY
T Y PE IN PYT HON. HOWEVER, IT IS BET T ER AND SAFER TO ONLY U SE IMMU TABLE T Y PES AS
DEMONST RAT ED IN TABLE FOR DEFAU LT VALU ES. T HE RAT IONALE BEHIND T HIS PRINCIPLE IS BEYOND
T HE SCOPE OF T HIS COU RSE, BU T YOU CAN READ MORE ABOU T IT IN T HE OFFICIAL DOCU MENTAT IONS.

ADVANCED TOPIC

def prepare_seq(seq, name, upper=False):

 """

 Prepares a sequence to be displayed.

 :param seq: Sequence

 :type seq: str

 :param name: Name of the sequence.

 :type name: str

 :param upper: Convert sequence to uppercase characters (default: False)

 :type upper: bool

 :return: Formated string containing the sequence.

 :rtype: str

 """

 template = 'The sequence of {} is: {}'

 if not upper:

 response = template.format(name, seq)

 else:

 seq_upper = seq.upper()

 response = template.format(name, seq_upper)

 return response

PYTHON

http://127.0.0.1:7966/02-input_output.html#tb:types:nativeTypes
https://docs.python.org/3/tutorial/controlflow.html#default-argument-values

Now if we don’t explicitly de�ne upper when calling prepare_seq() , its value is automatically considered to be False:

If we change the default value of False for upper and set to True, our sequence should be converted to upper case characters:

Modify the function from previous Do it Yourself to accept an optional argument called upper, with default value of False;
thereafter:

if upper is False, then the function should perform as it already does (similar to previous Do it Yourself);

if upper is True, then the function should convert the sequence onto uppercase characters before it looks for the TATA-box.

Do not forget to update the docstring of your function.

sequence = 'TagCtGC'

prepped = prepare_seq(sequence, 'DNA')

print(prepped)

PYTHON

The sequence of DNA is: TagCtGC

OUTPUT

prepped = prepare_seq(sequence, 'DNA', upper=True)

print(prepped)

PYTHON

The sequence of DNA is: TAGCTGC

OUTPUT

DO IT YOURSELF

Solution

It is possible to have more than one return in a function. This is useful when we need to account for different outcomes; such as the one we
saw in the previous example with prepare_seq() .

This means that we can simplify the process as follows:

def find_tata(seq, upper=False):

 """

 Finds the location of the TATA-box,

 if one exists, in a polynucleotide

 sequence.

 :param seq: Polynucleotide sequence.

 :type seq: str

 :param upper: Whether or not to

 homogenise the sequence

 to upper-case characters.

 :type upper: bool

 :return: Start of the TATA-box.

 :rtype: int

 """

 tata_box = 'TATA'

 if not upper:

 result = seq.find(tata_box)

 else:

 seq_prepped = seq.upper()

 result = seq_prepped.find(tata_box)

 return result

PYTHON

IT IS NOT NECESSARY TO IMPLEMENT YOU R FU NCT IONS IN T HIS WAY. IT IS , HOWEVER, A VERY COMMON
PRACT ICE AMONG ST PROG RAMMERS OF ANY LANG U AG E. FOR T HAT REASON, YOU SHOU LD BE AT LEAST
FAMIL IAR WIT H T HE T ECHNIQU E AS YOU ARE BOU ND TO ENCOU NT ER IT SOONER RAT HER LAT ER.

REMEMBER

Notice that we got rid of response. Here is a description of what happens:

In this context, if the conditional statement holds — i.e. when upper is False, we enter the if block. In that case, we reach the �rst
return statement. At this point, the function returns the corresponding results and terminates immediately.

On the other hand, if the condition does not hold — i.e. where upper is True, we skip the if block altogether and proceed. It is only then
that we arrive at the second return statement where the alternative set of results are prepared.

This does not alter the functionality of our function in any way. However, in complex functions that may be called repetitively (e.g. inside
for loop), this technique may improve the performance of the function.

Now if we call our function, it will behave in exactly the same way as it did before:

def prepare_seq(seq, name, upper=False):

 """

 Prepares a sequence to be displayed.

 :param seq: Sequence

 :type seq: str

 :param name: Name of the sequence.

 :type name: str

 :param upper: Convert sequence to uppercase characters (default: False)

 :type upper: bool

 :return: Formated string containing the sequence.

 :rtype: str

 """

 template = 'The sequence of {} is: {}'

 if not upper:

 return template.format(name, seq)

 seq_upper = seq.upper()

 return template.format(name, seq_upper)

PYTHON

sequence = 'TagCtGC'

prepped = prepare_seq(sequence, 'DNA')

print(prepped)

PYTHON

The sequence of DNA is: TagCtGC

OUTPUT

prepped = prepare_seq(sequence, 'DNA', upper=True)

print(prepped)

PYTHON

Interconnectivity of functions
Functions can call other functions. This is what makes them extremely powerful tools that may be utilised to address an unlimited number of
problems.

This allows us to devise a network of functions that call each other to perform different tasks at different times, and collectively contribute
to the production of one �nal answer.

The sequence of DNA is: TAGCTGC

OUTPUT

FU NCT IONS MU ST HAVE SPECIAL IST FU NCT IONALIT IES. T HEY SHOU LD, AS MU CH AS POSSIBLE, BE
IMPLEMENT ED TO PERFORM ONE TASK, AND ONE TASK ONLY.

SO IF YOU NEED TO G ET MORE T HING S DONE, DO NOT WRIT E MORE CODE IN ONE FU NCT ION. T HIS
WOU LD DEFY T HE PU RPOSE OF FU NCT IONAL PROG RAMMING . INST EAD, CONSIDER WRIT ING MORE
FU NCT IONS T HAT CONTAIN LESS CODE AND PERFORM MORE SPECIAL IST FU NCT IONALIT IES.

REMEMBER

Now that we have function to calculate the mean, we can go ahead and write a function to calculate the variance, which itself
relies on mean:

EXAMPLE: A MINI TOOLBOX FOR STATISTICS

def mean(arr):

 """

 Calculates the mean of an array.

 :param arr: Array of numbers.

 :type arr: list, tuple, set

 :return: Mean of the values in the array.

 :rtype: float

 """

 summation = sum(arr)

 length = len(arr)

 result = summation / length

 return result

PYTHON

Now we have two functions, which we can use to calculate the variance or the mean for any array of numbers.

Remember that testing a function a crucial part of its design. So let us go ahead and test our functions:

Now that we have a function to calculate the variance, we could easily go on to calculate the standard deviation, too.

The standard deviation is calculated from the square root of variance. We can easily implement this in a new function as follows:

def variance(arr):

 """

 Calculates the variance of an array.

 :param arr: Array of numbers.

 :type arr: list, tuple, set

 :return: Variance of the values in the array.

 :rtype: float

 """

 arr_mean = mean(arr)

 denominator = len(arr)

 numerator = 0

 for num in arr:

 numerator += (num - arr_mean) ** 2

 result = numerator / denominator

 return result

PYTHON

numbers = [1, 5, 0, 14.2, -23.344, 945.23, 3.5e-2]

PYTHON

numbers_mean = mean(numbers)

print(numbers_mean)

PYTHON

134.58871428571427

OUTPUT

numbers_variance = variance(numbers)

print(numbers_variance)

PYTHON

109633.35462420408

OUTPUT

Now let’s see how it works in practice:

Write a function that given an array of any values, produces a dictionary containing the value of that array as keys, and the count
of the values in the original array (their frequencies) as values.

Example:

For the following array:

the function should return the above dictionary:

Suggestion: You can add this as a new tool to the statistics mini toolbox.

def stan_dev(arr):

 """

 Calculates the standard deviation of an array.

 :param arr: Array of numbers.

 :type arr: list, tuple, set

 :return: Standard deviation of the values in the array.

 :rtype: float

 """

 from math import sqrt

 var = variance(arr)

 result = sqrt(var)

 return result

PYTHON

numbers_std = stan_dev(numbers)

print(numbers_std)

PYTHON

331.1092789762982

OUTPUT

DO IT YOURSELF

values = [1, 1.3, 1, 1, 5, 5, 1.3, 'text', 'text', 'something']

PYTHON

Solution

Exercises

def count_values(arr):

 """

 Converts an array into a dictionary of

 the unique members (as keys) and their

 counts (as values).

 :param arr: Array containing repeated

 members.

 :type arr: list, tuple

 :return: Dictionary of unique members

 with counts.

 :rtype: dict

 """

 unique = set(arr)

 arr_list = list(arr)

 result = dict()

 for num in unique:

 result[num] = arr_list.count(num)

 return result

PYTHON

Write a function with the following features:

Call the function get_basic_stats() and let it take one input argument which, however, may contain any number of input
arrays, e.g. a tuple of arrays.

Using a for loop, for each of the arrays calculate the mean and the variance using the functions ‘mean’ and ‘variance’ given
above, i.e. call those functions from within the function get_basic_stats() .

Calculate the standard deviation for each array as the square root of the variance. You will have to import the function sqrt
from module math.

Return a single array containing (in that order) the mean, the variance, and the standard deviation for each array.

To test the function, combine three arrays in a tuple as follows:

Call the function get_basic_stats() with this tuple as argument and write the output to a variable. Display the results in the
following form:

STD of array' index, ':' STD

The result for the above arrays should be:

STD of array 0 : 1.4142135623730951

STD of array 1 : 0.0

STD of array 2 : 0.14357537702854514

END OF CHAPTER EXERCISES

my_arrays = (

 [1, 2, 3, 4, 5],

 [7, 7, 7, 7],

 [1.0, 0.9, 1.2, 1.12, 0.95, 0.76],

)

PYTHON

Solution

def mean(arr):

 """

 Calculates the mean of an array.

 :param arr: Array of numbers.

 :type arr: list, tuple, set

 :return: Mean of the values in the array. :rtype: float

 """

 summation = sum(arr)

 length = len(arr)

 result = summation / length

 return result

def variance(arr):

 """

 Calculates the variance of an array.

 :param arr: Array of numbers.

 :type arr: list, tuple, set

 :return: Variance of the values in the array.

 :rtype: float

 """

 arr_mean = mean(arr)

 denominator = len(arr)

 numerator = 0

 for num in arr:

 numerator += (num - arr_mean) ** 2

 result = numerator / denominator

 return result

def get_basic_stats(arrays):

 """

 Calculates the mean, variance and standard deviation for

 a set of arrays.

 :param arrays: An array contain any number of arrays of numbers.

 :type arrays: list, tuple

 :return: A list of arrays containing the mean, variance and

 standard deviation for each item in arrays

 :rtype: list

 """

 from math import sqrt

 results = list()

 for array in arrays:

PYTHON

Functions make repetitive tasks ef�cient.

Keyword def is used to create a function.

Optional arguments does not require prior de�nition.

Inter-connectivity of functions make them very powerful.

 arr_mean = mean(array)

 arr_var = variance(array)

 arr_std = sqrt(arr_var)

 results.append((arr_mean, arr_var, arr_std))

 return results

my_arrays = ([1, 2, 3, 4, 5],

 [7, 7, 7, 7],

 [1.0, 0.9, 1.2, 1.12, 0.95, 0.76],

)

my_results = get_basic_stats(my_arrays)

for index, result in enumerate(my_results):

 print('STD of array', index, ': ', result[2])

STD of array 0 : 1.4142135623730951

STD of array 1 : 0.0

STD of array 2 : 0.14357537702854514

OUTPUT

KEY POINTS

