
Data Frames - Part 1
Last updated on 2024-05-24 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

Dataframes 1: Import DataDataframes 1: Import Data

OVERVIEW

Questions

How is data read into a dataframe?

What are different ways to manipulate data in dataframes?

What makes data visualisation simple in Python?

Objectives

Import data set as Pandas dataframe

Inspect data frame and access data

Produce an overview of data features

Create data plots using Matplotlib

Data Handling

https://github.com/carpentries/workbench-template-rmd/edit/main/episodes/01-data_frames_1.Rmd
https://github.com/carpentries/workbench-template-rmd/edit/main/episodes/01-data_frames_1.Rmd
http://127.0.0.1:4255/01-data_frames_1.pdf
http://127.0.0.1:4255/01-data_frames_1.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1
https://www.youtube.com/watch?v=jdWOAzK81VE

Dataframes 1: Basic StatisticsDataframes 1: Basic Statistics

Dataframes 1: Data VisualisationDataframes 1: Data Visualisation

Indexing of Arrays

For Loop through Array

Basic Statistics (distributions, mean, median, standard deviation)

Challenge: The diabetes data set
Here is a screenshot of the so-called diabetes data set. It is taken from this webpage and it is one of the example data sets used to
illustrate machine learning functionality in scikit-learn (Part III and Part IV of the course).

PREREQUISITES

https://www.youtube.com/watch?v=zw6t3yHEqGU
https://www.youtube.com/watch?v=mljXcIzx4ps
https://www4.stat.ncsu.edu/~boos/var.select/diabetes.tab.txt
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html

This �gure captures only the top part of the data. On the webpage you need to scroll down considerably to view the whole content. Thus, to
get an overview of the dataset is the �rst main task in Data Science.

introduces code to read and inspect the data

works with a speci�c data frame and extracts some techniques to get an overview

discusses the concept ‘distribution’ as a way of summarising data in a single �gure

access the data

check the content

produce a summary of basic properties

In this lesson we will only look at univariate features where each data column is studied independently of the others. Further
properties and bivariate features will be the topic of the next lesson.

Work Through Example

The small practice data �le for this section is called ‘everleys_data.csv’ and can be downloaded using the link given above in
“Materials for this Lesson”. To start, please create a subfolder called ‘data’ in the current directory and put the data �le in it. It can
now be accessed using the relative path data/everleys_data.csv or data\everleys_data.csv, respectively.

The �le everleys_data.csv contains blood concentrations of calcium and sodium ions from 17 patients with Everley’s syndrome.
The data are taken from a BMJ statistics tutorial. The data are stored as comma-separated values (csv), two values for each
patient.

To get to know a dataset, we will use the Pandas package and the Matplotlib plotting library. The Pandas package for data
science is included in the Anaconda distribution of Python. Check this link for installation instructions to get started.

If you are not using the Anaconda distribution, please refer to these guidelines.

To use the functions contained in Pandas they need to be imported. Our dataset is in ‘.csv’ format, and we therefore need to read it
from a csv �le. For this, we import the function read_csv. This function will create a Pandas dataframe.

THE LESSON

TO GET TO KNOW A DATASET YOU NEED TO

READING DATA INTO A PANDAS DATAFRAME

https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one/7-t-tests
https://pandas.pydata.org/getting_started.html
https://pandas.pydata.org/docs/getting_started/install.html

Executing this code does not lead to any output on the screen. However, the function is now ready to be used. To use it, we type its name
and provide the required arguments. The following code should import the Everley’s data into your JupyterLab notebook (or other Python
environment):

This code uses the read_csv function from Pandas to read data from a data �le, in this case a �le with extension ‘.csv’. Note that the
location of the data �le is speci�ed within quotes by the relative path to the subfolder ‘data’ followed by the �le name. Use the JupyterLab
�le browser to check that subfolder exists and has the �le in it.

from pandas import read_csv

PYTHON

for Mac OSX and Linux

(please go to the next cell if using Windows)

df = read_csv("data/everleys_data.csv")

PYTHON

Please uncomment for Windows

(please go to previous cell if using Mac OSX or Linux)

df = read_csv("data\everleys_data.csv")

PYTHON

After execution of the code, the data are contained in a variable called df. This is a structure referred to as a Pandas DataFrame.

A Pandas dataframe is a 2-dimensional labeled data structure with columns of potentially different
types. You can think of it as a spreadsheet.

To see the contents of df, simply use:

df

PYTHON

https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#dataframe

(Compare with the result of print(df) which displays the contents in a different format.)

The output shows in the �rst column an index, integers from 0 to 17; and the calcium and sodium concentrations in columns 2 and 3,
respectively. The default indexing starts from zero (Python is a ‘zero-based’ programming language).

In a dataframe, the �rst column is referred to as Indices, the �rst row is referred to as Labels. Note that the row with the labels is excluded
from the row count. Similarly, the row with the indices is excluded from the column count.

For large data sets, the function head is a convenient way to get a feel of the dataset.

Without any input argument, this displays the �rst �ve data lines of the dataframe. You can specify alter the number of rows displayed by
including a single integer as argument, e.g. head(10).

If you feel there are too many decimal places in the default view, you can restrict their number by using the round function:

 calcium sodium

0 3.455582 112.690980

1 3.669026 125.663330

2 2.789910 105.821810

3 2.939900 98.172772

4 5.426060 97.931489

5 0.715811 120.858330

6 5.652390 112.871500

7 3.571320 112.647360

8 4.300067 132.031720

9 1.369419 118.499010

10 2.550962 117.373730

11 2.894129 134.052390

12 3.664987 105.346410

13 1.362779 123.359490

14 3.718798 125.021060

15 1.865868 112.075420

16 3.272809 117.588040

17 3.917591 101.009870

OUTPUT

df.head()

PYTHON

 calcium sodium

0 3.455582 112.690980

1 3.669026 125.663330

2 2.789910 105.821810

3 2.939900 98.172772

4 5.426060 97.931489

OUTPUT

df.head().round(2)

PYTHON

While we can see how many rows there are in a dataframe when we display the whole data frame and look at the last index, there is a
convenient way to obtain the number directly:

You could see above, that the columns of the dataframe have labels. To see all labels:

Now we can count the labels to obtain the number of columns:

And if you want to have both the number of the rows and the columns together, use shape. Shape returns a tuple of two numbers, �rst the
number of rows, then the number of columns.

 calcium sodium

0 3.46 112.69

1 3.67 125.66

2 2.79 105.82

3 2.94 98.17

4 5.43 97.93

OUTPUT

no_rows = len(df)

print('Data frame has', no_rows, 'rows')

PYTHON

Data frame has 18 rows

OUTPUT

column_labels = df.columns

print(column_labels)

PYTHON

Index(['calcium', 'sodium'], dtype='object')

OUTPUT

no_columns = len(column_labels)

print('Data frame has', no_columns, 'columns')

PYTHON

Data frame has 2 columns

OUTPUT

Notice that shape (like columns) is not followed by round parenthesis. It is not a function that can take arguments. Technically, shape is a
‘property’ of the dataframe.

To �nd out what data type is contained in each of the columns, us dtypes, another ‘property’:

In this case, both columns contain �oating point (decimal) numbers.

Download the data �le ‘loan_data.csv’ using the link given above in “Materials for this Lesson”. It contains data that can be used for
the assessment of loan applications. Read the data into a DataFrame. It is best to assign it a name other than ‘df’ (to avoid
overwriting the Evereley data set).

Display the �rst ten rows of the Loan data set to see its contents. It is taken from a tutorial on Data Handling in Python which you
might �nd useful for further practice.

From this exercise we can see that a dataframe can contain different types of data: real numbers
(e.g. LoanAmount), integers (ApplicantIncome), categorical data (Gender), and strings (Loan_ID).

df_shape = df.shape

print('Data frame has', df_shape[0], 'rows and',df_shape[1], 'columns')

PYTHON

Data frame has 18 rows and 2 columns

OUTPUT

df.dtypes

PYTHON

calcium float64

sodium float64

dtype: object

OUTPUT

DIY1: READ DATA INTO A DATAFRAME

https://www.analyticsvidhya.com/blog/2016/01/complete-tutorial-learn-data-science-python-scratch-2/

Solution

Accessing data in a DataFrame
If a data�le is large and you only want to check the format of data in a speci�c column, you can limit the display to that column. To access
data contained in a speci�c column of a dataframe, we can use a similar convention as in a Python dictionary, treating the column names as
‘keys’. E.g. to show all rows in column ‘Calcium’, use:

from pandas import read_csv

dataframe from .csv file

df_loan = read_csv("data/loan_data.csv")

display contents

df_loan.head(10)

PYTHON

 Loan_ID Gender Married ... Loan_Amount_Term Credit_History Property_Area

0 LP001015 Male Yes ... 360.0 1.0 Urban

1 LP001022 Male Yes ... 360.0 1.0 Urban

2 LP001031 Male Yes ... 360.0 1.0 Urban

3 LP001035 Male Yes ... 360.0 NaN Urban

4 LP001051 Male No ... 360.0 1.0 Urban

5 LP001054 Male Yes ... 360.0 1.0 Urban

6 LP001055 Female No ... 360.0 1.0 Semiurban

7 LP001056 Male Yes ... 360.0 0.0 Rural

8 LP001059 Male Yes ... 240.0 1.0 Urban

9 LP001067 Male No ... 360.0 1.0 Semiurban

[10 rows x 12 columns]

OUTPUT

df['calcium']

PYTHON

To access individual rows of a column we use two pairs of square brackets:

Here all rules for slicing can be applied. As for lists and tuples, the indexing of rows is semi-inclusive, lower boundary included, upper
boundary excluded. Note that the �rst pair of square brackets refers to a column and the second pair refers to the rows. This is different
from e.g. accessing items in a nested list.

Accessing items in a Pandas dataframe is analogous to accessing the values in a Python dictionary by referring to its keys.

To access non-contiguous elements, we use an additional pair of square brackets (as if for a list within a list):

Another possibility to index and slice a dataframe is the use of the ‘index location’ or iloc property. It refers �rst to rows and then to
columns by index, all within a single pair of brackets. For example, to get all rows of the �rst column (index 0), you use:

0 3.455582

1 3.669026

2 2.789910

3 2.939900

4 5.426060

5 0.715811

6 5.652390

7 3.571320

8 4.300067

9 1.369419

10 2.550962

11 2.894129

12 3.664987

13 1.362779

14 3.718798

15 1.865868

16 3.272809

17 3.917591

Name: calcium, dtype: float64

OUTPUT

df['calcium'][0:3]

PYTHON

0 3.455582

1 3.669026

2 2.789910

Name: calcium, dtype: float64

OUTPUT

df['calcium'][[1, 3, 7]]

PYTHON

1 3.669026

3 2.939900

7 3.571320

Name: calcium, dtype: float64

OUTPUT

https://docs.python.org/3/tutorial/introduction.html

To display only the �rst three calcium concentrations, you use slicing, remembering that the upper bound is excluded):

To access non-consecutive values, we can use a pair of square brackets within the pair of square brackets:

Similarly, we can access the values from multiple columns:

df.iloc[:, 0]

PYTHON

0 3.455582

1 3.669026

2 2.789910

3 2.939900

4 5.426060

5 0.715811

6 5.652390

7 3.571320

8 4.300067

9 1.369419

10 2.550962

11 2.894129

12 3.664987

13 1.362779

14 3.718798

15 1.865868

16 3.272809

17 3.917591

Name: calcium, dtype: float64

OUTPUT

df.iloc[0:3, 0]

PYTHON

0 3.455582

1 3.669026

2 2.789910

Name: calcium, dtype: float64

OUTPUT

df.iloc[[2, 4, 7], 0]

PYTHON

2 2.78991

4 5.42606

7 3.57132

Name: calcium, dtype: float64

OUTPUT

To pick only the even rows from the two columns, check this colon notation:

The number after the second colon indicates the stepsize.

Display the calcium and sodium concentrations of all patients except the �rst. Check the model solution at the bottom for options.

df.iloc[[2, 4, 7], :]

PYTHON

 calcium sodium

2 2.78991 105.821810

4 5.42606 97.931489

7 3.57132 112.647360

OUTPUT

df.iloc[:18:2, :]

PYTHON

 calcium sodium

0 3.455582 112.690980

2 2.789910 105.821810

4 5.426060 97.931489

6 5.652390 112.871500

8 4.300067 132.031720

10 2.550962 117.373730

12 3.664987 105.346410

14 3.718798 125.021060

16 3.272809 117.588040

OUTPUT

DIY2: SELECT DATA FROM DATAFRAME

Solution

Mixing the ways to access speci�c data in a dataframe can be confusing and needs practice.

Search for missing values
Some tables contain missing entries. You can check a dataframe for such missing entries. If no missing entry is found, the function isnull
will return False.

This shows that there are no missing entries in our dataframe.

df[['calcium', 'sodium']][1:]

PYTHON

 calcium sodium

1 3.669026 125.663330

2 2.789910 105.821810

3 2.939900 98.172772

4 5.426060 97.931489

5 0.715811 120.858330

6 5.652390 112.871500

7 3.571320 112.647360

8 4.300067 132.031720

9 1.369419 118.499010

10 2.550962 117.373730

11 2.894129 134.052390

12 3.664987 105.346410

13 1.362779 123.359490

14 3.718798 125.021060

15 1.865868 112.075420

16 3.272809 117.588040

17 3.917591 101.009870

OUTPUT

df.isnull().any()

PYTHON

calcium False

sodium False

dtype: bool

OUTPUT

In the Loan data set, check the entry ‘Self-employed’ for ID LP001059. It shows how a missing value is represented as ‘NaN’ (not a
number).

Verify that the output of isnull in this case is True

Solution

Basic data features

Summary Statistics
To get a summary of basic data features use the function describe:

DIY3: FIND NAN IN DATAFRAME

df_loan['Self_Employed'][8]

PYTHON

nan

OUTPUT

df_loan['Self_Employed'][8:9].isnull()

PYTHON

8 True

Name: Self_Employed, dtype: bool

OUTPUT

description = df.describe()

description

PYTHON

The describe function produces a new dataframe (here called ‘description’) that contains the number of samples, the mean, the standard
deviation, minimum, 25th, 50th, 75th percentile, and the maximum value for each column of the data. Note that the indices of the rows have
now been replaced by strings. To access rows, it is possible to refer to those names using the loc property. E.g. to access the mean of the
calcium concentrations from the description, each of the following is valid:

Use your own .csv data set to practice. (If you don’t have a data set at hand, any excel table can be exported as .csv.) Read it into
a dataframe, check its header, access individual values or sets of values. Create a statistics using describe and check for missing
values using .isnull.

Solution

[ad libitum]

Iterating through the columns
Now we know how to access all data in a dataframe and how to get a summary statistics over each column.

 calcium sodium

count 18.000000 18.000000

mean 3.174301 115.167484

std 1.306652 10.756852

min 0.715811 97.931489

25% 2.610699 107.385212

50% 3.364195 115.122615

75% 3.706355 122.734200

max 5.652390 134.052390

OUTPUT

Option 1

description.loc['mean']['calcium']

Option 2

description.loc['mean'][0]

Option 3

description['calcium']['mean']

Option 4

description['calcium'][1]

PYTHON

3.1743005405555555

3.1743005405555555

3.1743005405555555

3.1743005405555555

OUTPUT

DIY4: PRACTICE

Here is code to iterate through the columns and access the �rst two concentrations:

As a slightly more complex example, we access the median (‘50%’) of each column in the description and add it to a list:

This approach is useful for data frames with a large number of columns. For instance, it is possible to then create a boxplot or histogram for
the means, medians etc. of the dataframe and thus to get an overview of all (comparable) columns.

Selecting a subset based on a template
An analysis of a data set may need to be done on part of the data. This can often be formulated by using a logical condition which speci�es
the required subset.

For this we will assume that some of the data are labelled ‘0’ and some are labelled ‘1’. Let us therefore see how to add a new column to
our Evereleys data frame which contains the (in this case arbitrary) labels.

First we randomly create as many labels as we have rows in the data frame. We can use the randint function which we import from
‘numpy.random’. randint in its simple form takes two arguments. First the upper bound of the integer needed, where by default it starts
from zero. As Python is exclusive on the upper bound, providing ‘2’ will thus yield either ‘0’ or ‘1’ only.

for col in df:

 print(df[col][0:2])

PYTHON

0 3.455582

1 3.669026

Name: calcium, dtype: float64

0 112.69098

1 125.66333

Name: sodium, dtype: float64

OUTPUT

conc_medians = list()

for col in df:

 conc_medians.append(df[col].describe()['50%'])

print('The columns are: ', list(df.columns))

print('The medians are: ', conc_medians)

PYTHON

The columns are: ['calcium', 'sodium']

The medians are: [3.3641954, 115.122615]

OUTPUT

Note how we obtain the number of rows (18) using len and do not put it directly into the code.

Now we create a new data column in our df dataframe which contains the labels. To create a new column, you can simply refer to a column
name that does not yet exist and assign values to it. Let us call it ‘gender’, assuming that ‘0’ represents male and ‘1’ represents female.

As gender speci�cation can include more than two labels, try to create a column with more than two randomly assigned labels e.g. (0, 1, 2).

Now we can use the information contained in ‘gender’ to �lter the data by gender. To achieve this, we use a conditional statement. Let us
check which of the rows are labelled as ‘1’:

from numpy.random import randint

no_rows = len(df)

randomLabel = randint(2, size=no_rows)

print('Number of rows: ', no_rows)

print('Number of Labels:', len(randomLabel))

print('Labels: ', randomLabel)

PYTHON

Number of rows: 18

Number of Labels: 18

Labels: [0 0 1 0 1 0 1 1 0 0 1 0 0 1 1 1 1 0]

OUTPUT

df['gender'] = randomLabel

df.head()

PYTHON

 calcium sodium gender

0 3.455582 112.690980 0

1 3.669026 125.663330 0

2 2.789910 105.821810 1

3 2.939900 98.172772 0

4 5.426060 97.931489 1

OUTPUT

df['gender'] == 1

PYTHON

If we assign the result of the conditional statement (Boolean True or False) to a variable, then this variable can act as a template to �lter the
data. If we call the data frame with that variable, we will only get the rows where the condition was found to be True:

Using the Boolean, we only pick the rows that are labelled ‘1’ and thus get a subset of the data according to the label.

Modify the code to calculate the number of samples labelled 0 and check the number of rows of that subset.

0 False

1 False

2 True

3 False

4 True

5 False

6 True

7 True

8 False

9 False

10 True

11 False

12 False

13 True

14 True

15 True

16 True

17 False

Name: gender, dtype: bool

OUTPUT

df_female = df['gender'] == 1

df[df_female]

PYTHON

 calcium sodium gender

2 2.789910 105.821810 1

4 5.426060 97.931489 1

6 5.652390 112.871500 1

7 3.571320 112.647360 1

10 2.550962 117.373730 1

13 1.362779 123.359490 1

14 3.718798 125.021060 1

15 1.865868 112.075420 1

16 3.272809 117.588040 1

OUTPUT

DIY5: USING A TEMPLATE

Solution

Visualisation of data
It is easy to see from the numbers that the concentrations of sodium are much higher than that of calcium. However, to also compare the
medians, percentiles and the spread of the data it is better to use visualisation.

The simplest way of visualisation is to use Pandas functionality which offers direct ways of plotting. Here is an example where a boxplot is
created for each column:

from numpy.random import randint

no_rows = len(df)

randomLabel = randint(2, size=no_rows)

df['gender'] = randomLabel

df_male = df['gender'] == 0

no_males = len(df[df_male])

print(no_males, 'samples are labelled "male".')

PYTHON

11 samples are labelled "male".

OUTPUT

df = read_csv("data/everleys_data.csv")

df.boxplot()

PYTHON

By default, boxplots are shown for all columns if no further argument is given to the function (empty round parenthesis). As the calcium plot
is rather squeezed we may wish to see it individually. This can be done by specifying the calcium column as an argument:

Boxplot of calcium results

df.boxplot(column='calcium')

PYTHON

Plots using Matplotlib

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in
Python.

The above is an easy way to create boxplots directly on the dataframe. It is based on the library Matplotlib and speci�cally uses the pyplot
library. For simplicity, the code is put in a convenient Pandas function.

However, we are going to use Matplotlib extensively later on in the course, and we therefore now introduce the direct, generic way of using
it.

For this, we import the function subplots from the pyplot library:

The way to use subplots is to �rst set up a �gure environment (below it is called ‘�g’) and an empty coordinate system (below called ‘ax’).
The plot is then done using one of the many methods available in Matplotlib. We apply it to the coordinate system ‘ax’.

As an example, let us create a boxplot of the calcium variable. As an argument of the function we need to specify the data. We can use the
values of the ‘calcium’ concentrations from the column with that name:

from matplotlib.pyplot import subplots, show

PYTHON

https://matplotlib.org/
https://matplotlib.org/stable/api/pyplot_summary.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.boxplot.html#matplotlib.pyplot.boxplot%7C

Note how following the actual plot we de�ne the title of the plot by referring to the same coordinate system ax.

The value of subplots becomes apparent when we try to create more than one plot in a single �gure.

Here is an example to create two boxplots next to each other. The keyword arguments to use is ‘ncols’ which is the number of �gures per
row. ‘ncols=2’ indicates that you want to have two plots next to each other.

fig, ax = subplots()

ax.boxplot(df['calcium'])

PYTHON

ax.set_title('Boxplot of Everley Calcium')

show()

PYTHON

fig, ax = subplots(ncols=2)

ax[0].boxplot(df['calcium'])

PYTHON

Note that you now have to refer to each of the subplots by indexing the coordinate system ‘ax’. This �gure gives a good overview of the
Everley’s data.

If you prefer to have the boxplots of both columns in a single �gure, that can also be done:

ax[0].set_title('Calcium')

ax[1].boxplot(df['sodium'])

PYTHON

ax[1].set_title('Sodium');

show()

PYTHON

fig, ax = subplots(ncols=1, nrows=1)

ax.boxplot([df['calcium'], df['sodium']], positions=[1, 2])

PYTHON

Plot the boxplots of the ‘ApplicantIncome’ and the ‘CoapplicantIncome’ in the Loan data using the above code.

ax.set_title('Boxplot of Calcium (left) and Sodium (right)')

show()

PYTHON

DIY6: BOXPLOT FROM LOAN DATA

Solution

Histogram
Another good overview is the histogram: Containers or ‘bins’ are created over the range of values found within a column and the count of
the values for each bin is plotted on the vertical axis.

fig, ax = subplots(ncols=1, nrows=1)

ax.boxplot([df_loan['ApplicantIncome'], df_loan['CoapplicantIncome']], positions=[1, 2])

PYTHON

ax.set_title('Applicant Income (left) & Co-Applicant Income (right)');

show()

PYTHON

This also shows how to add labels to the axes and a title to the overall �gure.

This uses the default value for the generation of the bins. It is set to 10 bins over the range of which values are found. The number of bins in
the histogram can be changed using the keyword argument ‘bins’:

fig, ax = subplots(ncols=2, nrows=1)

ax[0].hist(df['calcium'])

ax[0].set(xlabel='Calcium', ylabel='Count');

ax[1].hist(df['sodium'])

ax[1].set(xlabel='Sodium', ylabel='Count');

fig.suptitle('Histograms of Everley concentrations', fontsize=15);

show()

PYTHON

Note how the y-label of the right �gure is not placed well. To correct for the placement of the labels and the title, you can use
tight_layout on the �gure:

fig, ax = subplots(ncols=2, nrows=1)

ax[0].hist(df['calcium'], bins=5)

ax[0].set(xlabel='Calcium, 5 bins', ylabel='Count');

ax[1].hist(df['calcium'], bins=15)

ax[1].set(xlabel='Calcium, 15 bins', ylabel='Count');

fig.suptitle('Histograms with Different Binnings', fontsize=16);

show()

PYTHON

fig, ax = subplots(ncols=2, nrows=1)

ax[0].hist(df['calcium'], bins=5)

ax[0].set(xlabel='Calcium, 5 bins', ylabel='Count');

ax[1].hist(df['calcium'], bins=15)

ax[1].set(xlabel='Calcium, 15 bins', ylabel='Count');

fig.suptitle('Histograms with Different Binnings', fontsize=16);

fig.tight_layout()

show()

PYTHON

Take the loan data and display the histogram of the loan amount that people asked for. (Loan amounts are divided by 1000, i.e. in
k£ on the horizontal axis). Use e.g. 20 bins.

DIY7: CREATE THE HISTOGRAM OF A COLUMN

Solution

Handling the Diabetes Data Set
We now return to the data set that started our enquiry into the handling of data in a dataframe.

We will now:

Import the diabetes data from ‘sklearn’
Check the shape of the dataframe and search for NANs
Get a summary plot of one of its statistical quantities (e.g. mean) for all columns

First we import the data set and check its head. Wait until the numbers show below the code, it might take a while.

Histogram of loan amounts in k£

fig, ax = subplots()

ax.hist(df_loan['LoanAmount'], bins=20)

ax.set(xlabel='Loan amount', ylabel='Count');

ax.set_title('Histograms of Loan Amounts', fontsize=16);

show()

PYTHON

If you don’t see all columns, use the cursor to scroll to the right. Now let’s check the number of columns and rows.

There are 442 rows organised in 10 columns.

To get an overview, let us extract the mean of each column using ‘describe’ and plot all means as a bar chart. The Matplotlib function to plot
a bar chart is bar:

from sklearn import datasets

diabetes = datasets.load_diabetes()

X = diabetes.data

from pandas import DataFrame

df_diabetes = DataFrame(data=X)

df_diabetes.head()

PYTHON

 0 1 2 ... 7 8 9

0 0.038076 0.050680 0.061696 ... -0.002592 0.019907 -0.017646

1 -0.001882 -0.044642 -0.051474 ... -0.039493 -0.068332 -0.092204

2 0.085299 0.050680 0.044451 ... -0.002592 0.002861 -0.025930

3 -0.089063 -0.044642 -0.011595 ... 0.034309 0.022688 -0.009362

4 0.005383 -0.044642 -0.036385 ... -0.002592 -0.031988 -0.046641

[5 rows x 10 columns]

OUTPUT

no_rows = len(df_diabetes)

no_cols = len(df_diabetes.columns)

print('Rows:', no_rows, 'Columns:', no_cols)

PYTHON

Rows: 442 Columns: 10

OUTPUT

conc_means = list()

for col in df_diabetes:

 conc_means.append(df_diabetes[col].describe()['mean'])

print('The columns are: ', list(df_diabetes.columns))

print('The medians are: ', conc_means, 2)

PYTHON

The bars in this plot go up and down. Note, however, that the vertical axis has values ranging from -10 to +10 . This means that for
all practical purposes all means are zero. This is not a coincidence. The original values have been normalised to zero mean for the purpose
of applying some machine learning algorithm to them.

In this example, we see how important it is to check the data before working with them.

Exercises

The columns are: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The medians are: [-2.511816797794472e-19, 1.2307902309192911e-17, -2.2455642172282577e-16, -4.7975700837874

OUTPUT

fig, ax = subplots()

bins = range(10)

ax.bar(bins, conc_means);

show()

PYTHON

(-16) (-16)

Download the cervical cancer data set provided, import it using read_csv.

1. How many rows and columns are there?

2. How many columns contain �oating point numbers (�oat64)?

3. How many of the subjects are smokers?

4. Calculate the percentage of smokers

5. Plot the age distribution (with e.g. 50 bins)

6. Get the mean and standard distribution of age of �rst sexual intercourse

END OF CHAPTER EXERCISES

Solution

Q1

Q2

df_cervix = read_csv("data/cervical_cancer.csv")

df_cervix.head(10)

cervix_rows, cervix_cols = len(df_cervix), len(df_cervix.columns)

print('Number of rows:', cervix_rows)

print('Number of columns:', cervix_cols)

PYTHON

 Age Number of sexual partners ... Citology Biopsy

0 18 4.0 ... 0 0

1 15 1.0 ... 0 0

2 52 5.0 ... 0 0

3 46 3.0 ... 0 0

4 42 3.0 ... 0 0

5 51 3.0 ... 0 1

6 26 1.0 ... 0 0

7 45 1.0 ... 0 0

8 44 3.0 ... 0 0

9 27 1.0 ... 0 0

[10 rows x 34 columns]

Number of rows: 668

Number of columns: 34

OUTPUT

df_types = df_cervix.dtypes == 'float64'

print('There are', df_types.sum(), 'columns with floating point numbers')

PYTHON

There are 24 columns with floating point numbers

OUTPUT

df_types

PYTHON

Q3

Age False

Number of sexual partners True

First sexual intercourse True

Num of pregnancies True

Smokes True

Smokes (years) True

Smokes (packs/year) True

Hormonal Contraceptives True

Hormonal Contraceptives (years) True

IUD True

IUD (years) True

STDs True

STDs (number) True

STDs:condylomatosis True

STDs:cervical condylomatosis True

STDs:vaginal condylomatosis True

STDs:vulvo-perineal condylomatosis True

STDs:syphilis True

STDs:pelvic inflammatory disease True

STDs:genital herpes True

STDs:molluscum contagiosum True

STDs:AIDS True

STDs:HIV True

STDs:Hepatitis B True

STDs:HPV True

STDs: Number of diagnosis False

Dx:Cancer False

Dx:CIN False

Dx:HPV False

Dx False

Hinselmann False

Schiller False

Citology False

Biopsy False

dtype: bool

OUTPUT

for col in df_cervix:

 print(type(df_cervix[col][0]))

cervix_smoker = df_cervix['Smokes'] == 1.0

PYTHON

Q4

<class 'numpy.int64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.int64'>

<class 'numpy.int64'>

<class 'numpy.int64'>

<class 'numpy.int64'>

<class 'numpy.int64'>

<class 'numpy.int64'>

<class 'numpy.int64'>

<class 'numpy.int64'>

<class 'numpy.int64'>

OUTPUT

print('There are', cervix_smoker.sum(), 'smokers.')

print('This is', round(100*cervix_smoker.sum() / cervix_rows, 1), '% of the total.')

PYTHON

There are 96 smokers.

This is 14.4 % of the total.

OUTPUT

Q5

Q6

fig, ax = subplots()

ax.hist(df_cervix['Age'], bins=50)

ax.set_xlabel('Age', fontsize=20)

ax.set_ylabel('Count', fontsize=20)

ax.set_title('Age distribution of subjects', fontsize=24);

show()

PYTHON

int_mean = df_cervix['First sexual intercourse'].mean()

int_std = df_cervix['First sexual intercourse'].std()

print('Mean of age of first sexual intercourse: ', round(int_mean, 1))

print('Standard distribution of age of first sexual intercourse: ', round(int_std, 1))

PYTHON

Mean of age of first sexual intercourse: 17.1

Standard distribution of age of first sexual intercourse: 2.9

OUTPUT

Pandas package contains useful functions to work with dataframes.

iloc property is used to index and slice a dataframe.

describe function is used to get a summary of basic data features.

The simplest way of visualisation is to use Pandas functionality.

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python.

KEY POINTS

