
Data Frames - Part 2
Last updated on 2024-05-24 | Edit this page 

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

Dataframes 2: ScatterplotDataframes 2: Scatterplot

OVERVIEW

Questions

What is bivariate or multivariate analysis?

How are bivariate properties of data interpreted?

How can a bivariate quantity be explained?

When to use the correlation matrix?

What are the ways to study relationships in data?

Objectives

Practise working with Pandas dataframes and Numpy arrays.

Bivariate analysis of Pandas dataframe / Numpy array.

The Pearson correlation coefficient ( ).

Correlation Matrix as an example of bivariate summary statistics.

PCC

Data Handling

https://github.com/carpentries/workbench-template-rmd/edit/main/episodes/02-data_frames_2.Rmd
https://github.com/carpentries/workbench-template-rmd/edit/main/episodes/02-data_frames_2.Rmd
http://127.0.0.1:7756/02-data_frames_2.pdf
http://127.0.0.1:7756/02-data_frames_2.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1
https://www.youtube.com/watch?v=NjvFh7i74pI


Dataframes 2: Correlation MatrixDataframes 2: Correlation Matrix

Python Arrays

Basic Statistics, in particular the correlation coefficient

Pandas dataframes: import and handling

The following cell contains functions that need to be imported, please execute it before continuing with the Introduction.

PREREQUISITES

# To import data from a csv file into a Pandas dataframe

from pandas import read_csv

# To import a dataset from scikit-learn

from sklearn import datasets

# To create figure environments and plots

from matplotlib.pyplot import subplots, show

# Specific numpy functions, description in the main body

from numpy import corrcoef, fill_diagonal, triu_indices, arange

PYTHON

https://www.youtube.com/watch?v=Z8eX4ncHjyQ
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient


In many online tutorials you can find the following convention when importing functions:

(or similar). In this case, the whole library is imported and any function in that library is then available using
e.g. pd.read_csv(my_file)

We don’t recommend this as the import of the whole library uses a lot of working memory (e.g. on the order of 100 MB
for Numpy).

Introduction

In the previous lesson we have obtained some basic data quantifications using describe. Each of these quantities was
calculated for individual columns (where each column contained a different measured variable). However, in data analysis in
general, and especially in machine learning, the main point of analysis is to also try and exploit the presence of information that
lies in relationships between variables, i.e. columns in our data.

Quantities that are based on data from two variables are referred to as bivariate measures. Analysis that makes use of
bivariate (and potentially higher order) quantities is referred to as bivariate or (in general) multivariate data analysis.

When we combine uni- and multivariate analysis we can get an excellent overview of basic properties of a dataset.

NOTE

import numpy as np

import pandas as pd

PYTHON



Using the diabetes dataset (introduced in the previous lesson), let us look at the data from three of its columns: The
upper row of the below figure shows three histograms. A histogram is a summary plot of the recordings of a single
variable. The histograms of columns with indices 3, 4, and 5 have similar means and variances but that is due to prior
normalisation. The shapes differ but this does not tell us anything about a relationship between the measurements.

One thing that we want to know before we start to apply any machine learning is whether or not there is evidence of
relationships between the individual variables in a dataframe. One of the potential relationships is that the variables
are ‘similar’. One way to check for the similarity between variables in a dataset is to create a scatter plot. The bottom
row of the figure below contains the three scatter plots between variables used to create the histograms in the top
row.

(Please execute the code to create the figures. We will describe the scatter plot and its features later on.)

EXAMPLE: THE DIABETES DATA SET

# Figure Code

diabetes = datasets.load_diabetes()

diabetes_data = diabetes.data

fig, ax = subplots(figsize=(21, 10), ncols=3, nrows=2)

# Histograms

ax[0,0].hist(diabetes_data[:,3], bins=20)

ax[0,0].set_ylabel('Count', fontsize=20)

ax[0,1].hist(diabetes_data[:,4], bins=20)

ax[0,1].set_ylabel('Count', fontsize=20)

ax[0,2].hist(diabetes_data[:,5], bins=20)

ax[0,2].set_ylabel('Count', fontsize=20)

# Scatter plots

ax[1,0].scatter(diabetes_data[:,3], diabetes_data[:,4]);

ax[1,0].set_xlabel('Column 3', fontsize=20)

ax[1,0].set_ylabel('Column 4', fontsize=20)

ax[1,1].scatter(diabetes_data[:,4], diabetes_data[:,5]);

ax[1,1].set_xlabel('Column 4', fontsize=20)

ax[1,1].set_ylabel('Column 5', fontsize=20)

ax[1,2].scatter(diabetes_data[:,5], diabetes_data[:,3]);

ax[1,2].set_xlabel('Column 5', fontsize=20)

ax[1,2].set_ylabel('Column 3', fontsize=20);

show()

PYTHON

https://en.wikipedia.org/wiki/Scatter_plot


When plotting the data against each other in pairs (lower row), data column 3 versus column 4 (left) and column 5
versus 3 (right) both show a fairly uniform circular distribution of points. This is what would be expected if the data in
the two columns were independent of each other.

In contrast, column 4 versus 5 (centre) shows an elliptic, pointed shape along the main diagonal. This shows that
something particular goes on between these data sets. Specifically, it indicates that the two variables recorded in
these columns (indices 4 and 5) are not independent of each other. They are more similar than would be expected for
independent variables.

In this lesson we aim to get an overview of the similarities in a data set. We first introduce bivariate visualisation using
Matplotlib. Then we use Numpy functions to calculate correlation coefficients and the correlation matrix as an
introduction to multivariate analysis. Combined with the basic statistics obtained in the previous lesson we can get a
good overview of a high-dimensional data set before applying machine learning algorithms.

Work Through: Properties of a Data Set

Univariate properties
For recordings of variables that are contained e.g.  in the columns of a dataframe, we often assume the independence of
samples: the measurement in one row does not depend on the recording in another row. Therefore all results of the features
obtained e.g. under describe will not depend on the order of the rows. Also, while the numbers obtained from different rows
can be similar (or even the same) by chance, there is no way to predict the values in one row from the values of another row.

When comparing different variables arranged in columns, in contrast, this is not necessarily so. (We assume here that they are
consistent, e.g.  all values in a single row obtained from the same subject.) The values in one column can be related to the
numbers in another column and specifically they can show degrees of similarity. If, for instance, we have a number of subjects
investigated some of who have an inflammatory disease and some of who are healthy controls, an inflammatory marker might
be increased in the diseased subjects. If several markers are recorded from each subject (i.e. more than one column in the data
frame), the values of several inflammatory markers may be elevated simultaneously in the diseased subjects. Thus, the profiles
of these markers across the whole group will show a certain similarity.



The goal of multivariate data analysis is to find out whether similarities (or, in general, any relationships) between recorded
variables exist.

Let us first import a demo data set and check its basic statistics.
For a work through example, let us work with the ‘patients’ data set. We import the data from the .csv file using read_csv
from Pandas into a dataframe. We then check the number of columns and rows using the len function. We also check the data
type of each column to find out which columns can be used for quantitative analysis.

# Please adjust path according to operating system & personal path to file

df = read_csv('data/patients.csv')

df.head()

print('Number of columns: ', len(df.columns))

print('Number of rows: ', len(df))

df.head()

PYTHON

   Age  Height  Weight  Systolic  Diastolic  Smoker  Gender

0   38      71   176.0     124.0       93.0       1    Male

1   43      69   163.0     109.0       77.0       0    Male

2   38      64   131.0     125.0       83.0       0  Female

3   40      67   133.0     117.0       75.0       0  Female

4   49      64   119.0     122.0       80.0       0  Female

Number of columns:  7

Number of rows:  100

   Age  Height  Weight  Systolic  Diastolic  Smoker  Gender

0   38      71   176.0     124.0       93.0       1    Male

1   43      69   163.0     109.0       77.0       0    Male

2   38      64   131.0     125.0       83.0       0  Female

3   40      67   133.0     117.0       75.0       0  Female

4   49      64   119.0     122.0       80.0       0  Female

OUTPUT

print('The columns are of the following data types:')

df.dtypes

PYTHON

The columns are of the following data types:

Age            int64

Height         int64

Weight       float64

Systolic     float64

Diastolic    float64

Smoker         int64

Gender        object

dtype: object

OUTPUT



Out of the seven columns, three containing integers, three containing floating point (decimal) numbers, and the last one
containing gender specification as ‘female’ or ‘male’. We note that the sixth column contains a binary classification. Numerical
analysis can thus be restricted to columns with indices 0 to 4.

1. Get the basic statistical properties of first five columns from the ‘describe’ function.

2. Create a barchart of the means of each column. To access a row by its name you can use the convention
‘df_describe.loc[’name’]’.

3. Optional: In the bar chart of the means, try to add the standard deviation as an errorbar, using the keyword
argument yerr in the form ‘yerr = df_describe.loc[’std’]’.

Solution

DIY1: UNIVARIATE PROPERTIES OF THE PATIENTS DATA

df = read_csv('data/patients.csv')

df_describe = df.iloc[:, :5].describe()

df_describe.round(2)

PYTHON

          Age  Height  Weight  Systolic  Diastolic

count  100.00  100.00  100.00    100.00     100.00

mean    38.28   67.07  154.00    122.78      82.96

std      7.22    2.84   26.57      6.71       6.93

min     25.00   60.00  111.00    109.00      68.00

25%     32.00   65.00  130.75    117.75      77.75

50%     39.00   67.00  142.50    122.00      81.50

75%     44.00   69.25  180.25    127.25      89.00

max     50.00   72.00  202.00    138.00      99.00

OUTPUT



Solution

fig, ax = subplots()

bins = arange(5)

ax.bar(bins, df_describe.loc['min'])

show()

PYTHON



Solution

Visual Search for Similarity: the Scatter Plot
In Matplotlib, the function scatter allows plotting of one variable against the other. This is a common way to visually check for
relationships between individual columns in a dataframe.

fig, ax = subplots()

bins = arange(5)

ax.bar(bins, df_describe.loc['min'], yerr=df_describe.loc['std'])

ax.set_xticks(bins)

ax.set_xticklabels(df.columns[:5], fontsize=12);

show()

PYTHON



The data points appear to be grouped into two clouds. We will not deal with this qualitative aspect further at present.
Grouping will be discussed as Unsupervised Machine Learning or Clustering later in the Course.

However, from the plot one might also suspect that there is a trend of heavier people being taller. For instance, we note that
there are no points in the lower right corner of the plot (weight >160 pounds and height < 65 inches).

# Scatter plot

fig, ax = subplots();

ax.scatter(df['Weight'], df['Height']);

ax.set_xlabel('Weight (pounds)', fontsize=16)

ax.set_ylabel('Height (inches)', fontsize=16)

show()

PYTHON



Create a scatter plot of the systolic via the diastolic blood pressure. Do the two variables appear to be independent or
related?

Scatter plots are useful for the inspection of select pairs of data. However, they are only qualitative and thus, in
general, it is preferred to have a numerical quantity.

DIY2: SCATTER PLOT FROM THE PATIENTS DATA



Solution

From the plot one might suspect that a larger systolic value is connected with a larger diastolic value. However, the
plot in itself is not conclusive in that respect.

The Correlation Coefficient

Bivariate measures are quantities that are calculated from two variables of data. Bivariate features are the most widely used
subset of multivariate features - all of which require more than one variable in order to be calculated.

fig, ax = subplots();

ax.scatter(df['Systolic'], df['Diastolic']);

ax.set_xlabel('Systolic', fontsize=16)

ax.set_ylabel('Diastolic', fontsize=16)

show()

PYTHON



The concept behind many bivariate measures is to quantify “similarity” between two data sets. If any similarity is discovered it
is assumed that there is some connection or relationship between the sets. For similar variables, knowledge of one leads to
some expectation about the other.

Here we are going to look at a specific bivariate quantity: the Pearson correlation coefficient .

The formula for the Pearson  is set up such that two identical data sets yield a  of 1. (Technically this is done by
normalising all variances to be equal to 1). This implies that all data points in a scatter plot of a variable against itself are
aligned along the main diagonal (with positive slope).

Two perfectly antisymmetrical data sets (one variable can be obtained by multiplying the other by -1) yield a value -1. This
implies that all data points in a scatter plot are aligned along the negative or anti diagonal (with negative slope). All other
situations lie in between. A value of 0 refers to exactly balanced positive and negative contributions to the measure. (Note that
strictly speaking, the latter does not necessarily mean that there is no relationship between the variables).

The  is an undirected measure in the sense that its value for the comparison between data set 1 and data set 2 is the
same as the  between data set 2 and data set 1.

A direct way to calculate the  of two data-sets is to use the function corr applied to a dataframe. For instance, we can
apply it to the Everleys data:

The result as a matrix of two-by-two numbers. Along the diagonal (top left and bottom right) are the values for the comparison
of a column to itself. As any dataset is identical with itself, the values are one by definition.

The non-diagonal elements show that the  for the two data sets. Both  and  are given in the
matrix but because of the symmetry we would only need to report one of the two.

Note that in this lesson we introduce how to calculate the  but do not discuss its significance. E.g. the
interpretation of the value above needs to be checked against the fact that we only have 18 data points. Specifically,
we refrain from concluding that because the  is negative, a high value of the calcium concentration is associated
with a small value of the sodium concentration (relative to their respective means).

One quantitative way to assess whether or not a given value of the  is meaningful or not is to use surrogate data.
In our case, we could e.g.  create random numbers in an array with shape (18, 2) such that the two means and
standard deviations are the same as in the Everley data but the two columns are independent of each other. Creating
many realisations, we can check what distribution of  values is expected from the randomly generated data and
compare this with the values from the Everleys data.

PCC

PCC PCC

PCC

PCC

PCC

df_everley = read_csv('data/everleys_data.csv')

df_everley.corr()

PYTHON

          calcium    sodium

calcium  1.000000 -0.258001

sodium  -0.258001  1.000000

OUTPUT

CC ≈ −0.26 CC(12) CC(21)

NOTE

PCC

PCC

PCC

PCC

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient


A lot of what we are going to do in the machine learning sessions will involve Numpy arrays. Let us therefore convert the
Everleys data from a Pandas dataframe into a Numpy array.

We can see that the numbers remain the same but the format changed. E.g. we have lost the names of the columns. Similar to
the Pandas dataframe, we can use ‘shape’ to see the dimensions of the data array.

We can now use the Numpy function corrcoef to calculate the Pearson correlation:

everley_numpy = df_everley.to_numpy()

everley_numpy

PYTHON

array([[  3.4555817 , 112.69098   ],

       [  3.6690263 , 125.66333   ],

       [  2.7899104 , 105.82181   ],

       [  2.9399    ,  98.172772  ],

       [  5.42606   ,  97.931489  ],

       [  0.71581063, 120.85833   ],

       [  5.6523902 , 112.8715    ],

       [  3.5713201 , 112.64736   ],

       [  4.3000669 , 132.03172   ],

       [  1.3694191 , 118.49901   ],

       [  2.550962  , 117.37373   ],

       [  2.8941294 , 134.05239   ],

       [  3.6649873 , 105.34641   ],

       [  1.3627792 , 123.35949   ],

       [  3.7187978 , 125.02106   ],

       [  1.8658681 , 112.07542   ],

       [  3.2728091 , 117.58804   ],

       [  3.9175915 , 101.00987   ]])

OUTPUT

everley_numpy.shape

PYTHON

(18, 2)

OUTPUT

from numpy import corrcoef

corr_matrix = corrcoef(everley_numpy, rowvar=False)

print(corr_matrix)

PYTHON



The function corrcoef takes a two-dimensional array as input. The keyword argument rowvar is True by default which
means the correlation will be calculated along the rows. As we have the data features in the columns, it needs to be set to
False. (You can check what happens if you set it to ‘True’. Instead of a 2x2 matrix for two columns you will get a 18x18 matrix
for eighteen pair comparisons.)

We mentioned that the values of the  are calculated such that they must lie between -1 and 1. This is achieved by
normalisation with the variance. If for some reason we don’t want the similarity calculated using this normalisation, what we
get is the so-called covariance. In contrast to the  its values will depend on the absolute size of the numbers in the data
array. From Numpy, we can use the function cov to calculate the covariance:

The result shows how the covariance is strongly dependent on the actual numerical values in a data column. The two values
along the diagonal are identical with the variances obtained by squaring the standard deviation (calculated for example using
the describe function).

Calculate the Pearson  between the systolic and the diastolic blood pressure from the patients data using

i. the Pandas dataframe and

ii. the data as Numpy array.

[[ 1.         -0.25800058]

 [-0.25800058  1.        ]]

OUTPUT

PCC

PCC

from numpy import cov

cov_matrix = cov(everley_numpy, rowvar=False)

print(cov_matrix)

PYTHON

[[  1.70733842  -3.62631625]

 [ -3.62631625 115.70986192]]

OUTPUT

DIY3: CORRELATIONS FROM THE PATIENTS DATA

PCC



Solution

Solution

It is worth noting that it is equally possible to calculate the correlation between rows of a two-dimension array
(i.e. rowvar=True) but the interpretation will differ. Imagine a dataset where for two subjects a large number, call it ,
of metabolites were determined quantitatively (a Metabolomics dataset). If that dataset is of shape (2, N) then one
can calculate the correlation between the two rows. This would be done to determine the correlation of the metabolite
profiles between the two subjects.

The Correlation Matrix

If we have more than two columns of data, we can obtain a Pearson correlation coefficient for each pair. In general, for N
columns, we get  pairwise values. We omit the correlations of each column with itself, of which there are , which means
we are left with  pairs. Because each value appears twice due to symmetry of the calculation, we can ignore half
of them and we are left with  coefficients for  columns.

Here is an example for the ‘patients’ data:

df = read_csv('data/patients.csv')

df[['Systolic', 'Diastolic']].corr()

PYTHON

           Systolic  Diastolic

Systolic   1.000000   0.511843

Diastolic  0.511843   1.000000

OUTPUT

df_SysDia_numpy = df[['Systolic', 'Diastolic']].to_numpy()

df_SysDia_corr = corrcoef(df_SysDia_numpy, rowvar=False)

print('Correlation coefficient between Systole and Diastole:', round(df_SysDia_corr[0, 1], 2))

PYTHON

Correlation coefficient between Systole and Diastole: 0.51

OUTPUT

N

N 2 N

N ∗ (N − 1)
N ∗ (N − 1)/2 N



If we do the calculation with the Pandas dataframe, the ‘Gender’ is automatically ignored and by default we get 
coefficients for the six remaining columns. Note that the values that involves the ‘Smoker’ column are meaningless.

Let us now convert the dataframe to a Numpy array and check its shape:

Now we can try to calculate the correlation matrix for the first five columns of this data array. If we do it directly to the array,
we get an AttributeError: ‘float’ object has no attribute ‘shape’.

This is mended by converting the array to floating point before using the corrcoef function. For this we use astype(float):

The result is called the correlation matrix. It contains all the bivariate comparisons possible for the five columns chosen.

df = read_csv('data/patients.csv')

df.corr()

PYTHON

ValueError: could not convert string to float: 'Male'

OUTPUT

6 ∗ 5/2 = 15

patients_numpy = df.to_numpy()

patients_numpy.shape

PYTHON

(100, 7)

OUTPUT

cols = 5

patients_numpy_float = patients_numpy[:, :cols].astype(float)

patients_corr = corrcoef(patients_numpy_float, rowvar=False)

patients_corr

PYTHON

array([[1.        , 0.11600246, 0.09135615, 0.13412699, 0.08059714],

       [0.11600246, 1.        , 0.6959697 , 0.21407555, 0.15681869],

       [0.09135615, 0.6959697 , 1.        , 0.15578811, 0.22268743],

       [0.13412699, 0.21407555, 0.15578811, 1.        , 0.51184337],

       [0.08059714, 0.15681869, 0.22268743, 0.51184337, 1.        ]])

OUTPUT



In the calculation above we used the  to calculate the matrix. In general, any bivariate measure can be used to obtain a
matrix of same shape.

Heat map in Matplotlib
To get an illustration of the correlation pattern in a dataset we can plot the correlation matrix as a heatmap.

Here is some code using Matplotlib to plot a heatmap of the correlation matrix from the patients dataset. We use the function
imshow:

Note that we have specified the colour map ‘coolwarm’. For a list of Matplotlib colour maps, please refer to the gallery in the
documentation. The names to use in the code are on the left hand side of the colour bar.

Let us add two more features to improve the figure.
First, to have true correlations stand out (rather than the trivial self correlations along the diagonal which are always one) we
we can deliberately set the diagonal equal to zero. To achieve this, we use the Numpy function fill_diagonal.

Second, imshow scales the colours by default to the minimum and maximum value of the array. As such we don’t know what
red or blue means. To see the colour bar, it can be added to the figure environment ‘fig’ using colorbar.

PCC

fig, ax = subplots(figsize=(5,5))

im = ax.imshow(patients_corr, cmap='coolwarm');

show()

PYTHON

https://matplotlib.org/3.1.1/gallery/color/colormap_reference.html
https://matplotlib.org/3.1.1/gallery/color/colormap_reference.html


The result is that the correlation between columns ‘Height’ and ‘Weight’ is the strongest and presumably higher than could be
expected if these two measures were independent. We can confirm this by plotting a scatter plot for these two columns and
compare to the scatter plot for (original) columns 2 (Height) and 5 (Diastolic blood pressure):

from numpy import fill_diagonal

fill_diagonal(patients_corr, 0)

fig, ax = subplots(figsize=(7,7))

im = ax.imshow(patients_corr, cmap='coolwarm');

fig.colorbar(im, orientation='horizontal', shrink=0.7);

show()

PYTHON



Calculate and plot the correlation matrix of the first five columns as above based on the Spearman rank correlation
coefficient. It is based on the ranking of values instead of their numerical values as for the Pearson coefficient.
Spearman therefore tests for tests for monotonic relationships whereas Pearson tests for linear relationships.

To import the function use:

from scipy.stats import spearmanr

You can then apply it in the form:

data_spearman_corr = spearmanr(data).correlation

DIY4: SPEARMAN CORRELATIONS FROM THE PATIENTS DATA

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient


Solution

from scipy.stats import spearmanr

patients_numpy = df.to_numpy()

cols = 5

patients_numpy_float = patients_numpy[:, :cols].astype(float)

patients_spearman = spearmanr(patients_numpy_float).correlation

patients_spearman

PYTHON

array([[1.        , 0.11636668, 0.09327152, 0.12105741, 0.08703685],

       [0.11636668, 1.        , 0.65614849, 0.20036338, 0.14976559],

       [0.09327152, 0.65614849, 1.        , 0.12185782, 0.19738765],

       [0.12105741, 0.20036338, 0.12185782, 1.        , 0.48666928],

       [0.08703685, 0.14976559, 0.19738765, 0.48666928, 1.        ]])

OUTPUT

from numpy import fill_diagonal

fill_diagonal(patients_spearman, 0)

fig, ax = subplots(figsize=(7,7))

im = ax.imshow(patients_spearman, cmap='coolwarm');

fig.colorbar(im, orientation='horizontal', shrink=0.7);

show()

PYTHON



Analysis of the Correlation matrix

The Correlation Coefficients
To analyse the correlations in a data set, we are only interested in the  unduplicated correlation coefficients.
Here is a way to extract them and assign them to a variable.

We import the function triu_indices. It provides the indices of a matrix with specified size. The size we need is obtained
from our correlation matrix, using len. It is identical to the number of columns for which we calculated the .

We also need to specify that we do not want the diagonal to be included. For this, there is an offset parameter ‘k’ which will
collect the indices excluding the diagonal if it is set to 1. (To include the indices of the diagonal it would have to be 0).

N ∗ (N − 1)/2

CCs



Now we plot these correlation coefficients as a bar chart to see them one next to each other.

from numpy import triu_indices

# Get the number of rows of the correlation matrix

no_cols = len(patients_corr)

# Get the indices of the 10 correlation coefficients for 5 data columns

corr_coeff_indices = triu_indices(no_cols, k=1)

# Get the 10 correlation coefficients

corr_coeffs = patients_corr[corr_coeff_indices]

print(corr_coeffs)

PYTHON

[0.11600246 0.09135615 0.13412699 0.08059714 0.6959697  0.21407555

 0.15681869 0.15578811 0.22268743 0.51184337]

OUTPUT

fig, ax = subplots()

bins = arange(len(corr_coeffs))

ax.bar(bins, corr_coeffs);

show()

PYTHON



If there is a large number of coefficients, we can also display their histogram or a boxplot as a summary statistics.

The Average Correlation per Column
On a higher level, we can calculate the overall or average correlation per data column. We achieve this by averaging over
either the rows or the columns of the correlation matrix. Because our similarity measure is undirected, both ways of summing
yield the same result.

However, we need to consider the sign. The correlation coefficients can be positive or negative. As such, adding for instance +1
ans -1 would yield an average of zero even though both indicate perfect correlation and anti-correlation, respectively. We
address this by using the absolute value abs, ignoring the sign.

To average, we use function mean. This function by default averages over all values of the matrix. To obtain the five values by
averaging over the columns, we specify the ‘axis’ keyword argument as 0.



from numpy import abs, mean

# Absolute values of correlation matrix

corr_matrix_abs = abs(patients_corr)

# Average of the correlation strengths

corr_column_average = mean(corr_matrix_abs, axis=0)

fig, ax = subplots()

bins = arange(corr_column_average.shape[0])

ax.bar(bins, corr_column_average );

print(corr_column_average)

show()

PYTHON

[0.08441655 0.23657328 0.23316028 0.20316681 0.19438933]

OUTPUT



The result is that the average column correlation is on the order of 0.2 for the columns with indices 1 to 4 and less than 0.1 for
the column with index 0, which is the age.

The Average Data Set Correlation
The sum over rows or columns has given us a reduced set of values to look at. We can now take the final step and average
over all correlation coefficients. This will yield the average correlation of the data set. It condenses the full bivariate analysis
into a single number and can be a starting point when comparing e.g. different data sets of the same type.

Application: The Diabetes Data Set

We now return to the data set that started our enquiry into dataframes in the previous lesson. Let us apply the above and do a
summary analysis of its bivariate features.

First we import the data. it is one of the example datasets of scikit-learn, the Python library for Machine Learning. As such it is
already included in the Anaconda package and you can import it directly.

For the bivariate features, let us get the correlation matrix and plot it as a heatmap. We use code introduced above.

# Average of the correlation strengths

corr_matrix_average = mean(corr_matrix_abs)

print('Average correlation strength: ', round(corr_matrix_average, 3))

PYTHON

Average correlation strength:  0.19

OUTPUT

from sklearn import datasets

diabetes = datasets.load_diabetes()

data_diabetes = diabetes.data

PYTHON



There is one strongly correlated pair (column indices 4 and 5) and one strongly anti-correlated pair (column indices 6 and 7).

Now we calculate the  correlation coefficients and plot them as a histogram:

from numpy import fill_diagonal

data_corr_matrix = corrcoef(data_diabetes, rowvar=False)

fill_diagonal(data_corr_matrix, 0)

fig, ax = subplots(figsize=(8, 8))

im = ax.imshow(data_corr_matrix, cmap='coolwarm');

fig.colorbar(im, orientation='horizontal', shrink=0.5);

show()

PYTHON

10 ∗ 9/2 = 45



This histogram shows that the data have a distribution that is shifted towards positive correlations. However, only four values
are (absolutely) larger than 0.5 (three positive, one negative).

Next we can get the average (absolute) correlation per column.

from numpy import triu_indices

data_corr_coeffs = data_corr_matrix[triu_indices(data_corr_matrix.shape[0], k=1)]

fig, ax = subplots()

ax.hist(data_corr_coeffs, bins=10);

show()

PYTHON



In the plot, note how the column names were extracted from the ‘diabetes’ data using diabetes.feature_names.

Finally, we can obtain the average correlation of the whole data set.

data_column_average = mean(abs(data_corr_matrix), axis=0)

fig, ax = subplots()

bins = arange(len(data_column_average))

ax.bar(bins, data_column_average);

ax.set_title('Average Correlation Strength per Column')

ax.set_xticks(arange(len(diabetes.feature_names)))

ax.set_xticklabels(diabetes.feature_names);

show()

PYTHON

# Average of the correlation strengths

data_corr_matrix_average = mean(abs(data_corr_matrix))

print('Average Correlation Strength: ', round(data_corr_matrix_average, 3))

PYTHON



Exercises

Assignment: The Breast Cancer Data

Import the breast cancer data set using read_csv. Based on the code of this lesson, try to do the following:

1. Get the summary (univariate) statistics of columns 2-10 (accessing indices 1:10) using describe

2. Plot the means of each column as a bar chart with standard deviations as error bars. Why are some bars
invisible?

3. Extract the values as Numpy array using to_numpy. The shape of the array should be (569, 31).

4. Calculate the correlation matrix using corrcoef from Numpy and plot it as a heatmap. The shape of the matrix
should be (31, 31). Use fill_diagonal to set the diagonal elements to 0.

5. Calculate the average column correlation and plot it as a bar chart.

6. Calculate the average correlation strength of the data set.

In case of doubt, try to get help from the respective documentations for Pandas dataframes, Numpy and Matplotlib.

Average Correlation Strength:  0.29

OUTPUT

END OF CHAPTER EXERCISES



Solution

Q1

Q2

# To import data from a csv file into a Pandas dataframe

from pandas import read_csv

# To import a dataset from scikit-learn

from sklearn import datasets

# To create figure environments and plots

from matplotlib.pyplot import subplots, show

# Specific numpy functions, description in the main body

from numpy import corrcoef, fill_diagonal, triu_indices, arange

from numpy import mean

df_bc = read_csv("data/breast_cancer.csv")

df_bc_describe = df_bc.iloc[:, 1:10].describe()

df_bc_describe.round(2)

PYTHON

       radius_mean  texture_mean  ...  concave points_mean  symmetry_mean

count       569.00        569.00  ...               569.00         569.00

mean         14.13         19.29  ...                 0.05           0.18

std           3.52          4.30  ...                 0.04           0.03

min           6.98          9.71  ...                 0.00           0.11

25%          11.70         16.17  ...                 0.02           0.16

50%          13.37         18.84  ...                 0.03           0.18

75%          15.78         21.80  ...                 0.07           0.20

max          28.11         39.28  ...                 0.20           0.30

[8 rows x 9 columns]

OUTPUT

fig, ax = subplots()

bins = arange(df_bc_describe.shape[1])

ax.bar(bins, df_bc_describe.loc['mean'], yerr=df_bc_describe.loc['std'])

show()

PYTHON



Q3

Q4

bc_numpy = df_bc.to_numpy()

bc_numpy.shape

PYTHON

(569, 31)

OUTPUT

bc_corr = corrcoef(bc_numpy, rowvar=False)

bc_corr.shape

PYTHON

(31, 31)

OUTPUT



Q5

from numpy import fill_diagonal

fill_diagonal(bc_corr, 0)

fig, ax = subplots(figsize=(7,7))

im = ax.imshow(bc_corr, cmap='coolwarm');

fig.colorbar(im, orientation='horizontal', shrink=0.7);

show()

PYTHON



Q6

bc_column_average = mean(abs(bc_corr), axis=0)

fig, ax = subplots()

bins = arange(len(bc_column_average))

ax.bar(bins, bc_column_average);

ax.set_title('Average Correlation Strength per Column');

show()

PYTHON

# Average of the correlation strengths

bc_corr_matrix_average = mean(abs(bc_corr))

print('Average Correlation Strength: ', round(bc_corr_matrix_average, 3))

PYTHON



Quantities based on data from two variables are referred as bivariate measures.

Bivariate properties can be studied using matplotlib and numpy.

Multivariate data analysis helps to find out relationships between recorded variables.

Functions corr and corrcoef are used to calculate the .

A correlation matrix is visualised as a heatmap.

Average Correlation Strength:  0.387

OUTPUT

KEY POINTS

PCC


