
Image Handling
Last updated on 2024-05-24 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

Images: Gray ImageImages: Gray Image

OVERVIEW

Questions

How to read and process images in Python?

How is an image mask created?

What are colour channels in images?

How to deal with big images?

Objectives

Understanding 2-dimensional greyscale images.

Learning image masking.

2-dimensional colour images, colour channels

Decreasing memory load

Data Handling

https://github.com/carpentries/workbench-template-rmd/edit/main/episodes/03-image_handling.Rmd
https://github.com/carpentries/workbench-template-rmd/edit/main/episodes/03-image_handling.Rmd
http://127.0.0.1:5390/03-image_handling.pdf
http://127.0.0.1:5390/03-image_handling.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1
https://www.youtube.com/watch?v=Wn2GCHu-Glw

Images: Colour ImageImages: Colour Image

Images: MaskingImages: Masking

Numpy arrays

Plots and subplots with matplotlib

PREREQUISITES

https://www.youtube.com/watch?v=JVx2szMOZc8
https://www.youtube.com/watch?v=xJsCInqgLz4

This lesson has no explicit exercises. At each step, use images of your own choice to practice. There are many
image file formats, different colour schemes etc for which you can try to find similar or analogous solutions.

Challenge

Reading and Processing Images
In biology, we often deal with images, for example from microscopy and different medical imaging modalities. In many
cases, we wish to extract some quantitative information from these images. The focus of this lesson is to read and
process images in Python. This includes:

Working with 2-dimensional greyscale images
Creating and applying binary image masks
Working with 2-dimensional colour images, and interpreting colour channels
Decreasing the memory for further processing by reducing resolution or patching
Working with 3-dimensional images

Image Example
The example in Figure 1 is an image from the cell image library with the following description:

“Midsaggital section of rat cerebellum, captured using confocal imaging. Section shows
inositol trisphosphate receptor (IP3R) labelled in green, DNA in blue, and synaptophysin
in magenta. Honorable Mention, 2010 Olympus BioScapes Digital Imaging
Competition®.”

We might want to, for example, determine the relative amounts of IP3R, DNA and synaptophysin in this image. This
tutorial will guide you through some of the steps to get you started with processing images of all sorts using Python. At
the end, you will have the opportunity to come back to this image example and perform some analysis of your own.

Figure 1: Example image, rat cerebellum

Figure 1: Example image, rat cerebellum

Work Through Example

EXERCISES

http://cellimagelibrary.org/home

Reading and Plotting a 2-dimensional Image
First, we want to read in an image. For this part of the lesson, we use a histological slice through an axon bundle as an
example. We use Matplotlib’s image module, from which we import imread to store the image in a variable called img.
The function imread can interpret many different image formats, including jpg, png and tif images.

We can check what type of variable this is:

This tells us that the image is stored in a Numpy array. We can check some other properties of this array, for example,
what the image dimensions are.

This tells us that our image is composed of 2300 by 3040 data units, or pixels as we are dealing with an image. It is
equivalent to the image resolution. The array has two dimensions, and so we can expect our image to be two-
dimensional as well. Let us now use matplotlib.pyplot’s imshow function to plot the image to see what it looks like. We
set the colour map to gray to overwrite the default colour map.

from matplotlib.image import imread

img = imread('fig/axon_slice.jpg')

PYTHON

PIL.UnidentifiedImageError: cannot identify image file 'fig/axon_slice.jpg'

OUTPUT

print(type(img))

PYTHON

NameError: name 'img' is not defined

OUTPUT

print(img.shape)

PYTHON

NameError: name 'img' is not defined

OUTPUT

imshow has allowed us to plot the Numpy array of our image data as a picture. The figure is divided up into a number of
pixels, and each of those pixels is assigned an intensity value stored in the Numpy array. Let’s have a closer look by
selecting a smaller region of our image and plotting that.

from matplotlib.pyplot import subplots, show

fig, ax = subplots(figsize=(25, 15))

ax.imshow(img, cmap='gray');

PYTHON

show()

PYTHON

from matplotlib.pyplot import subplots, show

fig, ax = subplots(figsize=(25, 15))

ax.imshow(img[:50, :70], cmap='gray');

PYTHON

With img[:50, :70] we select the first 50 values from the first dimension, and the first 70 values from the second
dimension. Thus, the image above shows a very small part of the upper left corner of our original image. As we are now
zoomed in quite close to that corner, we can easily see the individual pixels here. Let’s take a quick look at an even
smaller section.

NameError: name 'img' is not defined

OUTPUT

show()

PYTHON

fig, ax = subplots(figsize=(25, 15))

ax.imshow(img[:20, :15], cmap='gray');

PYTHON

NameError: name 'img' is not defined

OUTPUT

This is a small section from that same upper left corner. Each square is a pixel and it has one grey value. So how exactly
are the pixel values assigned? By the numbers stored in the Numpy array, img. Let us have a look at those values by
picking a slice from the array.

Each of these numbers corresponds to an intensity in the specified colourmap. These numbers range from 0 to 255,
implying 256 shades of grey.

We chose cmap = gray, which assigns darker grey colours to smaller numbers, and lighter grey colours to higher
numbers. However, we can also pick a colourmap to plot our image, and we can even show a colourbar to keep track of
the intensity values. Matplotlib has a large number of very nice colourmaps that you can look through here. We show an
example of the colourmaps called viridis and magma:

show()

PYTHON

print(img[:20, :15])

PYTHON

NameError: name 'img' is not defined

OUTPUT

https://matplotlib.org/tutorials/colors/colormaps.html

fig, ax = subplots(nrows=1, ncols=2, figsize=(25, 15))

p1 = ax[0].imshow(img[:20, :15], cmap='viridis')

PYTHON

p2 = ax[1].imshow(img[:20, :15], cmap='magma')

PYTHON

fig.colorbar(p1, ax=ax[0], shrink = 0.8)

PYTHON

fig.colorbar(p2, ax=ax[1], shrink = 0.8);

PYTHON

show()

PYTHON

Note, that even though we can plot our greyscale image with colourful colourschemes, it still does not qualify as a colour
image. This is because colour images will require three sets of intensities for each pixel, not just one as in this example. In
the case above, the number in the array represented a grey value and the colour was assigned to that grey value by
Matplotlib. These represent ‘false’ colours.

Creating an Image Mask
Now that we know that the images are composed of a set of intensities that are just numbers in a Numpy array, we can
start using these numbers to process our image.

As a first approach, we can plot a histogram of the original image intensities. We use the .flatten() method to turn
the original 2300 x 3040 array into a one-dimensional array with 6,992,000 values. This rearrangement allows the
inclusion of an image as a single column in a matrix or dataframe!

The histogram plot shows how many of each of the intensities are found in this image:

The histogram is a distribution with intensity values mostly between about 50 and 250.
The image shows a cut through an axon bundle. Say we are now interested in the myelin sheath surrounding the axons
(the dark rings). We can create a mask that isolates pixels whose intensity value is below a certain threshold (because
darker pixels have lower intensity values). Everything below this threshold can be assigned to e.g. 1 (representing True),
and everything above will be assigned to 0 (representing False). This is called a binary or Boolean mask.

Based on the histogram above, we might try to adjust that threshold somewhere between 100 and 200. Let’s see what
we get with a threshold set to 125. We first use a conditional statement to create the mask. Then we apply the mask to
the image. As a result we plot both the mask and the masked image.

fig, ax = subplots(figsize=(10, 4))

ax.hist(img.flatten(), bins = 50)

PYTHON

ax.set_xlabel("Pixel intensity", fontsize=16);

show()

PYTHON

threshold = 125

mask = img < threshold

PYTHON

img_masked = img*mask

PYTHON

fig, ax = subplots(nrows=1, ncols=2, figsize=(20, 10))

ax[0].imshow(mask, cmap='gray')

PYTHON

ax[0].set_title('Binary mask', fontsize=16)

ax[1].imshow(img_masked, cmap='gray')

PYTHON

ax[1].set_title('Masked image', fontsize=16)

show()

PYTHON

The left subplot shows the binary mask itself. White represents values where our condition is true, and black where our
condition is false. The right image shows the original image after we have applied the binary mask, i.e. the original pixel
intensities in regions where the mask value is true.

Note that “applying the mask” means that the intensities where the condition is true are left unchanged and the
intensities where the condition is false are multiplied with zero ans therefore set to zero.

Let’s have a look at the resulting image histograms.

fig, ax = subplots(nrows=1, ncols=2, figsize=(20, 5))

ax[0].hist(img_masked.flatten(), bins=50)

PYTHON

ax[0].set_title('Histogram of masked image', fontsize=16)

ax[0].set_xlabel("Pixel intensity", fontsize=16)

ax[1].hist(img_masked[img_masked != 0].flatten(), bins=25)

PYTHON

ax[1].set_title('Histogram of masked image after zeros are removed', fontsize=16)

ax[1].set_xlabel("Pixel intensity", fontsize=16)

show()

PYTHON

On the left we show all the values for the masked image. There is a large peak at zero, as a large part of the image is
masked. On the right, we show only the non-zero pixel intensities. We can see that our mask worked as expected, only
values up to 125 are found. This is because our threshold causes a sharp cut-off at a pixel intensity of 125.

Colour Images
Often we want to work with colour images. So far, our image had a single intensity value for each pixel. In colour images,
we will have three so-called channels corresponding to red, green and blue intensities. Any colour will be a composite of
the intensity value for each of these colours. We now show an example with a colour image of the rat cerebellar cortex.
Let us import it and check its shape.

Our image array now contains three dimensions. The first two are the spatial dimensions corresponding to the pixel
positions. The last one contains the three colour channels. So we have three layers of intensity values on top of each
other.

First, let us plot the whole image.

img_col = imread('fig/rat_brain_low_res.jpg')

PYTHON

PIL.UnidentifiedImageError: cannot identify image file 'fig/rat_brain_low_res.jpg'

OUTPUT

img_col.shape

PYTHON

NameError: name 'img_col' is not defined

OUTPUT

fig, ax = subplots(figsize=(25, 15))

ax.imshow(img_col);

PYTHON

The sample is labeled for Hoechst stain (blue), the Inositol trisphosphate (IP3) receptor (green) and Glial fibrillary acidic
protein (GFAP) (red).
Now we can visualise the three colour channels individually by slicing the Numpy array. The stack with index 0
corresponds to ‘red’, index 1 corresponds to ‘green’ and index 2 corresponds to ‘blue’:

NameError: name 'img_col' is not defined

OUTPUT

show()

PYTHON

red_channel = img_col[:, :, 0]

PYTHON

NameError: name 'img_col' is not defined

OUTPUT

green_channel = img_col[:, :, 1]

PYTHON

NameError: name 'img_col' is not defined

OUTPUT

blue_channel = img_col[:, :, 2]

PYTHON

NameError: name 'img_col' is not defined

OUTPUT

fig, ax = subplots(nrows=1, ncols=3, figsize=(20, 10))

imgplot_red = ax[0].imshow(red_channel, cmap="Reds")

PYTHON

imgplot_green = ax[1].imshow(green_channel, cmap="Greens")

PYTHON

imgplot_blue = ax[2].imshow(blue_channel, cmap="Blues")

PYTHON

fig.colorbar(imgplot_red, ax=ax[0], shrink=0.4)

PYTHON

fig.colorbar(imgplot_green, ax=ax[1], shrink=0.4)

PYTHON

This shows what colour combinations each of the pixels is made up of. Notice that the intensities go up to 255. This is
because RGB (red, green and blue) colours are defined within the range 0-255. This gives a total of 16,777,216 possible
colour combinations!

We can plot histograms of each of the colour channels.

fig.colorbar(imgplot_blue, ax=ax[2], shrink=0.4);

PYTHON

show()

PYTHON

fig, ax = subplots(nrows=1, ncols=3, figsize=(20, 5))

ax[0].hist(red_channel.flatten(), bins=50)

PYTHON

ax[0].set_xlabel("Pixel intensity", fontsize=16)

ax[0].set_xlabel("Red channel")

ax[1].hist(green_channel.flatten(), bins=50)

PYTHON

Dealing with Large Images
Sometimes (or quite often, depending on the field of research), we have to deal with very large images that are
composed of many pixels. It can be quite difficult to process these images, as they can require a lot of computer memory
when they are processed. We will look at two different strategies for dealing with this problem: decreasing resolution
and using patches from the original image. We will use the full-resolution version of the rat brain in the above example.

In fact, we can even get an warning from python that say something like “Image size (324649360 pixels) exceeds limit of
244158474 pixels, could be decompression bomb DOS attack.” This refers to malicious files which are designed to crash
or cause disruption by using up a lot of memory.

We can get around this by changing the maximum pixel limit as follows.

To do this, we import Image from the Python Image Library PIL:

ax[1].set_xlabel("Pixel intensity", fontsize=16)

ax[1].set_xlabel("Green channel")

ax[2].hist(blue_channel.flatten(), bins=50)

PYTHON

ax[2].set_xlabel("Pixel intensity", fontsize=16)

ax[2].set_xlabel("Blue channel")

show()

PYTHON

img_hr = imread('fig/rat_brain.jpg')

img_hr.shape

PYTHON

PIL.UnidentifiedImageError: cannot identify image file 'fig/rat_brain.jpg'

NameError: name 'img_hr' is not defined

OUTPUT

Let’s try again. Be patient, it might take a moment.

Now we can plot the full high-resolution image:

from PIL import Image

Image.MAX_IMAGE_PIXELS = 1000000000

PYTHON

img_hr = imread('fig/rat_brain.jpg')

PYTHON

PIL.UnidentifiedImageError: cannot identify image file 'fig/rat_brain.jpg'

OUTPUT

img_hr.shape

PYTHON

NameError: name 'img_hr' is not defined

OUTPUT

fig, ax = subplots(figsize=(25, 15))

ax.imshow(img_hr, cmap='gray');

PYTHON

NameError: name 'img_hr' is not defined

OUTPUT

show()

PYTHON

Although now we can plot this image, it consists of over 300 million pixels, and we could run into memory problems
when trying to process it. One approach is simply to reduce the resolution. One way to do this is to import the image
using Image from the PIL library that we imported above. This library gives us more tools to process images, including
decreasing the resolution. It is a rich library with lots of useful tools. As always, having a look at the documentation and
playing around is recommended!

We use resize to downsample the image:

Plotting should now be quicker.

img_pil = Image.open('fig/rat_brain.jpg')

img_small = img_pil.resize((174, 187))

print(type(img_small))

PYTHON

PIL.UnidentifiedImageError: cannot identify image file 'fig/rat_brain.jpg'

NameError: name 'img_pil' is not defined

NameError: name 'img_small' is not defined

OUTPUT

https://pillow.readthedocs.io/en/stable/

With this code, we have resized the image to 174 by 187 pixels. We should be aware though, that our image is no
longer in a Numpy array form but rather it now has type ‘PIL.Image.Image’. We can, however, easily convert it back into
a Numpy array using array, if we wish.

fig, ax = subplots(figsize=(25, 15))

ax.imshow(img_small, cmap='gray');

PYTHON

NameError: name 'img_small' is not defined

OUTPUT

show()

PYTHON

from numpy import array

img_numpy = array(img_small)

PYTHON

Often, we like to have full resolution images, as resizing causes a loss of information. An alternative approach to
downsampling that is commonly used is to patch the images, i.e. divide the picture up into smaller chunks, or patches.

For this, we can use functionality from the Scikit-Learn library.

‘extract_patches_2d’ is used to extract parts of the image. The shape of each patch as well as maxiaml number of
patches can be specified.

Note that patching itself can be a memory-intensive task. Extracting lots and lots of patches might take a long time. To
look at the patches we can use a for loop:

NameError: name 'img_small' is not defined

OUTPUT

print(type(img_numpy))

PYTHON

NameError: name 'img_numpy' is not defined

OUTPUT

from sklearn.feature_extraction.image import extract_patches_2d

PYTHON

patches = extract_patches_2d(img_hr, (174, 187), max_patches=100)

PYTHON

NameError: name 'img_hr' is not defined

OUTPUT

patches.shape

PYTHON

NameError: name 'patches' is not defined

OUTPUT

https://scikit-learn.org/stable/

fig, ax = subplots(nrows=10, ncols=10, figsize=(25, 25))

ax = ax.flatten()

for index in range(patches.shape[0]):

 ax[index].imshow(patches[index, :, :, :])

PYTHON

NameError: name 'patches' is not defined

OUTPUT

show()

PYTHON

Now, working with these smaller, individual patches will be much more manageable!

3D Images
Sometimes we might want to work with 3D images. A good example for this are MRI scans. These don’t come as ‘csv’
format but in specialised image formats. One example is nii, the Neuroimaging Informatics Technology Initiative (NIfTI)
open file format. For these types of images we will need special software. In particular, we will be using the open source
library called nibabel. Documentation for this package is available at https://nipy.org/nibabel/.

As it is not contained in your Python installation by default, it needs to be installed first.

To install it, please run:

conda install -c conda-forge nibabel

https://nipy.org/nibabel/

in your command line or terminal if you have an Anaconda distribution of Python.

Alternatively, you can install it using:

pip install nibabel

in your command line or terminal.

The package is now available for use. If a function comes from that package, we call it by referring to the package using
nib, followed by a period and the name of the function:

We can see that this image has three dimensions, and a total of 256 x 256 x 124 volume pixels (or voxels). To visualise
our image, we can plot one slice at a time. Below, we show three different slices, in the transverse direction (from chin to
the top of the head. To access an image from the transverse direction, you pick a single value from the third dimension of
the image:

import nibabel as nib

PYTHON

img_3d = nib.load('fig/brain.nii')

img_data = img_3d.get_fdata()

print(type(img_data))

PYTHON

<class 'numpy.memmap'>

OUTPUT

print(img_data.shape)

PYTHON

(256, 256, 124)

OUTPUT

These look fairly dark. We can improve the contrast, by adjusting the intensity range. This requires setting of the
keyword arguments vmin and vmax.

vmin and vmax define the data range that the colormap (in our case the ‘grey’ map) covers. By default, the colormap
covers the complete value range of the supplied data. For an image that will be somewhere between 0 and 255. If we
want to brighten up the darker shades of grey, we can reduce the value of vmax

fig, ax = subplots(ncols=3, figsize=(25, 15))

p1 = ax[0].imshow(img_data[:, :, 60], cmap='gray')

p2 = ax[1].imshow(img_data[:, :, 75], cmap='gray')

p3 = ax[2].imshow(img_data[:, :, 90], cmap='gray')

fig.colorbar(p1, ax=ax[0], shrink=0.4)

PYTHON

fig.colorbar(p2, ax=ax[1], shrink=0.4)

PYTHON

fig.colorbar(p3, ax=ax[2], shrink=0.4);

show()

PYTHON

Expanding the above code:

What about the other dimensions? We can also plot coronal and sagittal slices but note that the respective slices have
different pixel resolution.

fig, ax = subplots(ncols=3, figsize=(25, 15))

p1 = ax[0].imshow(img_data[:, :, 60], cmap='gray', vmin=0, vmax=150)

p2 = ax[1].imshow(img_data[:, :, 75], cmap='gray', vmin=0, vmax=150)

p3 = ax[2].imshow(img_data[:, :, 90], cmap='gray', vmin=0, vmax=150)

fig.colorbar(p1, ax=ax[0], shrink=0.4)

PYTHON

fig.colorbar(p2, ax=ax[1], shrink=0.4)

PYTHON

fig.colorbar(p3, ax=ax[2], shrink=0.4);

show()

PYTHON

Now, we can see all three viewing planes for this 3-dimensional brain scan!

fig, ax = subplots(nrows=3, ncols=5, figsize=(26, 18))

t1 = ax[0, 0].imshow(img_data[:, :, 45].T, cmap='gray', vmin=0, vmax=150, origin='lower')

t2 = ax[0, 1].imshow(img_data[:, :, 60].T, cmap='gray', vmin=0, vmax=150, origin='lower')

t3 = ax[0, 2].imshow(img_data[:, :, 75].T, cmap='gray', vmin=0, vmax=150, origin='lower')

t4 = ax[0, 3].imshow(img_data[:, :, 90].T, cmap='gray', vmin=0, vmax=150, origin='lower')

t5 = ax[0, 4].imshow(img_data[:, :, 105].T, cmap='gray', vmin=0, vmax=150, origin='lower')

c1 = ax[1, 0].imshow(img_data[:, 50, :].T, cmap='gray', vmin=0, vmax=150, origin='lower')

c2 = ax[1, 1].imshow(img_data[:, 75, :].T, cmap='gray', vmin=0, vmax=150, origin='lower')

c3 = ax[1, 2].imshow(img_data[:, 90, :].T, cmap='gray', vmin=0, vmax=150, origin='lower')

c4 = ax[1, 3].imshow(img_data[:, 105, :].T, cmap='gray', vmin=0, vmax=150, origin='lower')

c5 = ax[1, 4].imshow(img_data[:, 120, :].T, cmap='gray', vmin=0, vmax=150, origin='lower')

s1 = ax[2, 0].imshow(img_data[75, :, :].T, cmap='gray', vmin=0, vmax=150, origin='lower')

s2 = ax[2, 1].imshow(img_data[90, :, :].T, cmap='gray', vmin=0, vmax=150, origin='lower')

s3 = ax[2, 2].imshow(img_data[105, :, :].T, cmap='gray', vmin=0, vmax=150, origin='lower')

s4 = ax[2, 3].imshow(img_data[120, :, :].T, cmap='gray', vmin=0, vmax=150, origin='lower')

s5 = ax[2, 4].imshow(img_data[135, :, :].T, cmap='gray', vmin=0, vmax=150, origin='lower');

show()

PYTHON

Exercises

Assignment

Using the image from the beginning of this lesson, “rat_cerebellum.jpg”, do the following tasks:

1. Import the image and display it.

2. Show histograms of each of the colour channels and plot the contributions of each of the RGB colours
separately.

3. Create three different binary masks using manually determined thresholds: one for mostly red pixels, one for
mostly green pixels, and one for mostly blue pixels. Note that you can apply conditions that are either
greater than or smaller than a threshold of your choice.

4. Plot the three masks and the corresponding masked images.

5. Using your masks, approximate the relative amounts of synaptophysin, IP3R, and DNA in the image. To do
this, you can assume that the number of red pixels represents synaptophysin, green pixels represents IP3R
and blue pixels represent DNA. The results will vary depending on the setting of the thresholds. How do
different threshold values change your results?

6. Change the resolution of your image to different values. How does the resolution affect your results?

END OF CHAPTER EXERCISES

Solution

Q1

Import the image

from matplotlib.image import imread

img_task = imread('fig/rat_cerebellum.jpg')

PYTHON

PIL.UnidentifiedImageError: cannot identify image file 'fig/rat_cerebellum.jpg'

OUTPUT

Display the image

from matplotlib.pyplot import subplots, show

fig, ax = subplots(figsize=(20, 10))

ax.imshow(img_task, cmap='gray');

PYTHON

show()

PYTHON

Q2

red_channel = img_task[:, :, 0]

PYTHON

green_channel = img_task[:, :, 1]

PYTHON

blue_channel = img_task[:, :, 2]

PYTHON

fig, ax = subplots(ncols=3, figsize=(20, 5))

ax[0].hist(red_channel.flatten(), bins=50)

PYTHON

ax[0].set_xlabel("Pixel intensity", fontsize=16)

ax[0].set_xlabel("Red channel")

ax[1].hist(green_channel.flatten(), bins=50)

PYTHON

ax[1].set_xlabel("Pixel intensity", fontsize=16)

ax[1].set_xlabel("Green channel")

ax[2].hist(blue_channel.flatten(), bins=50)

PYTHON

ax[2].set_xlabel("Pixel intensity", fontsize=16)

ax[2].set_xlabel("Blue channel");

show()

PYTHON

fig, ax = subplots(ncols=3, figsize=(20, 10))

imgplot_red = ax[0].imshow(red_channel, cmap="Reds")

PYTHON

imgplot_green = ax[1].imshow(green_channel, cmap="Greens")

PYTHON

imgplot_blue = ax[2].imshow(blue_channel, cmap="Blues")

PYTHON

fig.colorbar(imgplot_red, ax=ax[0], shrink=0.5)

PYTHON

fig.colorbar(imgplot_green, ax=ax[1], shrink=0.5)

PYTHON

fig.colorbar(imgplot_blue, ax=ax[2], shrink=0.5);

PYTHON

show()

PYTHON

Q3-4

red_mask = red_channel > 120

PYTHON

green_mask = green_channel > 100

PYTHON

blue_mask = blue_channel > 100

PYTHON

red_masked = red_channel*red_mask

PYTHON

green_masked = green_channel*green_mask

PYTHON

blue_masked = blue_channel*blue_mask

PYTHON

fig, ax = subplots(nrows=3, ncols=2, figsize=(18, 20))

ax[0, 0].imshow(red_mask, cmap='gray')

PYTHON

ax[0, 0].set_title('Red binary mask', fontsize=16)

ax[0, 1].imshow(red_masked, cmap='Reds')

PYTHON

ax[0, 1].set_title('Masked image', fontsize=16)

ax[1, 0].imshow(green_mask, cmap='gray')

PYTHON

ax[1, 0].set_title('Green binary mask', fontsize=16)

ax[1, 1].imshow(green_masked, cmap='Greens')

PYTHON

ax[1, 1].set_title('Masked image', fontsize=16)

ax[2, 0].imshow(blue_mask, cmap='gray')

PYTHON

ax[2, 0].set_title('Blue binary mask', fontsize=16)

ax[2, 1].imshow(blue_masked, cmap='Blues')

PYTHON

ax[2, 1].set_title('Masked image', fontsize=16);

show()

PYTHON

Q5

from numpy import sum as numpy_sum

total_pixels = img_task.shape[0]*img_task.shape[1]

red_counts = numpy_sum(red_mask)

green_counts = numpy_sum(green_mask)

blue_counts = numpy_sum(blue_mask)

print("Approximately %d"%(red_counts/total_pixels*100)+"% of the image is synaptophysin")

print("Approximately %d"%(green_counts/total_pixels*100)+"% of the image is IP3R")

print("Approximately %d"%(blue_counts/total_pixels*100)+"% of the image is DNA")

PYTHON

Q6

[ad libitum]

imread function can interpret many different image formats.

Masking isolates pixels whose intensity value is below a certain threshold.

The colour images are comprised of three channels (corresponding to red, green and blue intensities).

Python Image Library (PIL) helps to set high pixel limit for larger images.

NameError: name 'img_task' is not defined

NameError: name 'red_mask' is not defined

NameError: name 'green_mask' is not defined

NameError: name 'blue_mask' is not defined

NameError: name 'red_counts' is not defined

NameError: name 'green_counts' is not defined

NameError: name 'blue_counts' is not defined

OUTPUT

KEY POINTS

