
Time Series
Last updated on 2024-05-24 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

Time Series: Plot a DataframeTime Series: Plot a Dataframe

OVERVIEW

Questions

How is timeseries data visualised?

Why do we need to tidy up/filter the data?

How to study correlation among timeseries data points?

Objectives

Learning ways to display multiple time series.

Understanding why filtering is needed.

Explaining fourier spectrum of time series.

Knowledge of correlation matrix of time series.

Data Handling

https://github.com/carpentries/workbench-template-rmd/edit/main/episodes/04-time_series.Rmd
https://github.com/carpentries/workbench-template-rmd/edit/main/episodes/04-time_series.Rmd
http://127.0.0.1:6363/04-time_series.pdf
http://127.0.0.1:6363/04-time_series.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1
https://www.youtube.com/watch?v=qWYBBXR8Yrs

Time Series: Function to Plot Time SeriesTime Series: Function to Plot Time Series

Dataframes 1 and 2

Image Handling

Basics of Numpy Arrays

PREREQUISITES

from pandas import read_csv

from numpy import arange, zeros, linspace, sin, pi, c_, mean, var, array

from numpy import correlate, corrcoef, fill_diagonal, amin, amax, asarray

from numpy import around

from numpy.ma import masked_less, masked_greater

from matplotlib.pyplot import subplots, yticks, legend, axis, figure, show

PYTHON

https://www.youtube.com/watch?v=T2Qh7yjHC9M
http://127.0.0.1:6363/01-data_frames_1.html
http://127.0.0.1:6363/03-image_handling.html
http://127.0.0.1:6363/04-time_series.html

Please execute the following function definition before proceeding. The function code takes data and creates a plot of all
columns as time series, one above the other. When you execute the function code nothing happens. Similar to the import,
running a function code will only activate it and make it available for later use.

Example: Normal and Pathological EEG

PYTHON FUNCTION

def plot_series(data, sr):

 '''

 Time series plot of multiple time series

 Data are normalised to mean=0 and var=1

 data: nxm numpy array. Rows are time points, columns are recordings

 sr: sampling rate, same time units as period

 '''

 samples = data.shape[0]

 sensors = data.shape[1]

 period = samples // sr

 time = linspace(0, period, period*sr)

 offset = 5 # for mean=0 and var=1 normalised data

 # Calculate means and standard deviations of all columns

 means = data.mean(axis=0)

 stds = data.std(axis=0)

 # Plot each series with an offset

 fig, ax = subplots(figsize=(7, 8))

 ax.plot(time, (data - means)/stds + offset*arange(sensors-1,-1,-1));

 ax.plot(time, zeros((samples, sensors)) + offset*arange(sensors-1,-1,-1),'--',color='gray');

 yticks([]);

 names = [str(x) for x in range(sensors)]

 legend(names)

 ax.set(xlabel='Time')

 axis('tight');

 return fig, ax

PYTHON

As an example, let us import two sets of time series data and convert them to Numpy arrays, here called data_back and data_epil. They
represent human electroencephalogram (EEG) as recorded during normal background activity and during an epileptic seizure called
absence seizure.

The read_csv function is used with the keyword argument delim_whitespace. When set to True, this allows to import data that are
space-separated (rather than comma-separated). If you check the data .txt files, you will see that the numbers (which represent
voltages) are indeed separated by space, not comma.

Next, three constants are assigned: The sampling rate, sr, which is given in number of samples recorded per seconds; the duration of the
recording, period, which is given in seconds; and the number of columns, referred to as channels, to be extracted from the recording. We
use the first 10 columns in this lesson.

The data are then converted from a data frame to Numpy arrays.

To see the names of the channels (or recording sensors) we can use head.

The row indices and column names for the seizure data look the same. The names of the recording channels are from the commonly used
10-20 system to record voltages of brain activity from the scalp in humans. E.g. ‘F’ stands for the frontal lobe.

We can now use the plot function from above to plot the data. Note from the definition (first line) that two input arguments are required:
the data set and the sampling rate.

df_back = read_csv("data/EEG_background.txt", delim_whitespace=True)

df_epil = read_csv("data/EEG_absence.txt", delim_whitespace=True)

sr = 256 # 1 / seconds

period = 6 # seconds

channels = 10

d1 = df_back.to_numpy()

d2 = df_epil.to_numpy()

data_back = d1[:period*sr:, :channels]

data_epil = d2[:period*sr:, :channels]

PYTHON

df_back.head()

PYTHON

 FP1 FP2 F3 F4 ... EO2 EM1 EM2 PHO

0 -7.4546 22.8428 6.28159 15.6212 ... 13.7021 12.9109 13.7034 9.37573

1 -11.1060 21.4828 6.89088 15.0562 ... 13.7942 13.0194 13.7628 9.44731

2 -14.4000 20.0907 7.94856 14.1624 ... 13.8982 13.1116 13.8239 9.51796

3 -17.2380 18.7206 9.36857 13.0093 ... 14.0155 13.1927 13.8914 9.58770

4 -19.5540 17.4084 11.06040 11.6674 ... 14.1399 13.2692 13.9652 9.65654

[5 rows x 28 columns]

OUTPUT

https://en.wikipedia.org/wiki/10%E2%80%9320_system_(EEG)

plot_series(data_back, sr)

show()

PYTHON

plot_series(data_epil, sr);

show()

PYTHON

Observations

1. Background:

There are irregular oscillations of all recorded brain potentials.

Oscillations recorded at different locations above the brain differ.

Oscillations are not stable but modulated over time.

There are different frequency components in each trace.

2. Epileptic Seizure:

There are regular oscillations.

Oscillations recorded at different locations are not identical but similar or at least related in shape.

Despite some modulation, oscillations are fairly stable over time.

There are repetitive motifs composed of two major components throughout the recording, a sharp spike and a slow wave.

Task

Quantify features of these time series data to get an overview. As a univariate feature we can use the frequency content. This takes into
account the fact that the rows (or samplles) are not independent of each other but are organised along the time axis. In consequence,
there are correlations between data points along the rows of each column and the Fourier spectrum can be used to identify these.

The Fourier spectrum assumes that the data are stationary and can be thought of as a superposition of regular sine waves with
different frequencies. Its output will show which of the frequencies are present in the data and also their respective amplitudes.

As a bivariate feature we can use the cross-correlation matrix.

Work Through Example
Check the Numpy array containing the background and seizure data.

There are 1536 rows and 10 columns.

Display data with offset
Take a look at the code of the function plot_series that creates the time series plot. It requires the input of a data file where the row
index is interpreted as time. In addition, the sampling rate sr is required to be able to extract the time scale. The sampling rate specifies
the number of samples recorded per unit time.

The sensors or recording channels are assumed to be in the columns.

print(data_back.shape, data_epil.shape)

PYTHON

(1536, 10) (1536, 10)

OUTPUT

The declaration syntax def is followed by the function name and, in parenthesis, the input arguments. It is completed with a colon.

Following the declaration is the documentation of the function.

Next comes the function code, all indented.

The function closes with the optional output syntax return and any number of returned variables, anything that might be used as a
product of running the function.

In our example, the figure environment and the coordinate system are ‘returned’, and can in principle be used to further modify the plot.

Here is how to call the function and then add a title and the sensor names to the display.

def plot_series(data, sr):

 '''

 Time series plot of multiple time series

 Data are normalised to mean=0 and var=1

 data: nxm numpy array. Rows are time points, columns are channels

 sr: sampling rate, same time units as period

 '''

 samples = data.shape[0]

 sensors = data.shape[1]

 period = samples // sr

 time = linspace(0, period, period*sr)

 offset = 5 # for mean=0 and var=1 normalised data

 # Calculate means and standard deviations of all columns

 means = data.mean(axis=0)

 stds = data.std(axis=0)

 # Plot each series with an offset

 fig, ax = subplots(figsize=(7, 8))

 ax.plot(time, (data - means)/stds + offset*arange(sensors-1,-1,-1));

 ax.plot(time, zeros((samples, sensors)) + offset*arange(sensors-1,-1,-1),'--',color='gray');

 yticks([]);

 names = [str(x) for x in range(sensors)]

 legend(names)

 ax.set(xlabel='Time')

 axis('tight');

 return fig, ax

PYTHON

A function usually (but not necessarily) takes in one or several variables or values, processes them, and produces a specific result. The
variable(s) given to a function and those produced by it are referred to as input arguments, and outputs respectively.

There are different ways to create functions in Python. In this course, we will be using def to implement our own functions. This is the
easiest, and by far the most common method for declaring functions. The structure of a typical function defined using def can be see in
the plot_series example:

There are several points to remember in relation to functions:

The name of a function follows same principles as that of any other variable. It must be in lower-case characters.

The input arguments of a function, e.g. data and sr in the example, are essentially variables whose scope is the function. That is,
they are only accessible within the function itself, and not from outside the function.

(fig, ax) = plot_series(data_epil, sr)

names = df_back.columns[:channels]

fig.suptitle('Recording of Absence Seizure', fontsize=16);

legend(names);

show()

PYTHON

Variables defined inside of a function, should not use the same name as variables defined outside. Otherwise they may override
each other.

It is important for a function to only perform one specific task. As such it can be used independent of the current context. Try to avoid
incorporating separable tasks into a single function.

Once you start creating functions for different purposes you can start to build your own library of ready-to-use functions to address
different needs. This is the primary principle of a popular programming paradigm known as functional programming.

Filtering
Data sets with complex waveforms contain many different components which may or may not be relevant for a specific question.
Data filtering is applied to take out specific components. Component in this context refers to ‘frequency’, i.e. the number of cycles per unit
of time. Thus a small number refers to low frequencies with long periods (cycles) and a large number to high frequencies with short
periods.

Let us see a simple example how both low- and high-frequency components can be filtered (suppressed) in the example time series.

Here is a simple function which takes two additional input arguments, the low and the high cut-off.

def data_filter(data, sr, low, high):

 """

 Filtering of multiple time series.

 data: nxm numpy array. Rows are time points, columns are recordings

 sr: sampling rate, same time units as period

 low: Low cut-off frequency (high-pass filter)

 high: High cut-off frequency (low-pass filter)

 return: filtered data

 """

 from scipy.signal import butter, sosfilt

 order = 5

 filter_settings = [low, high, order]

 sos = butter(order, (low,high), btype='bandpass', fs=sr, output='sos')

 data_filtered = zeros((data.shape[0], data.shape[1]))

 for index, column in enumerate(data.transpose()):

 forward = sosfilt(sos, column)

 backwards = sosfilt(sos, forward[-1::-1])

 data_filtered[:, index] = backwards[-1::-1]

 return data_filtered

PYTHON

https://en.wikipedia.org/wiki/Functional_programming

The frequency range from 8 to 13 Hz is referred to as alpha band in the electroencephalogram. It is thought that this represents a kind of
idling rhythm of the brain, i.e. an activity where the brain is not actively processing sensory input.

Create figures of the delta (1-4 Hz) band for both the background and the seizure EEG. Note the differences.

data_back_filt = data_filter(data_back, sr, 8, 13)

(fig, ax) = plot_series(data_back_filt, sr)

fig.suptitle('Filtered Recording of Background EEG', fontsize=16);

legend(names);

show()

PYTHON

DIY1: BAND-PASS FILTERED DATA

Solution

data_back_filt = data_filter(data_back, sr, 1, 4)

(fig, ax) = plot_series(data_back_filt, sr)

fig.suptitle('Delta Band of Background EEG', fontsize=16);

legend(names);

show()

PYTHON

Fourier Spectrum
The Fourier spectrum decomposes the time series into a sum of sine waves. The spectrum gives the coefficients of each of the sine wave
components. The coefficients are directly related to the amplitudes needed to optimally fit the sum of all sine waves to recreate the
original data.

However, the assumption behind the Fourier transform is that the data are provided as in infinitely long stationary time series. These
assumptions are not fulfilled as the data are finite and stationarity of a biological system can typically not be guaranteed. Thus,
interpretation needs to be cautious.

Fourier Transform of EEG data
We import the Fourier transform function fft from scipy.fftpack and can use it to transform all columns at the same time.

data_epil_filt = data_filter(data_epil, sr, 1, 4)

(fig, ax) = plot_series(data_epil_filt, sr)

fig.suptitle('Delta Band of Seizure EEG', fontsize=16);

legend(names);

show()

PYTHON

To plot the results, a couple of steps are required.
First, we obtain a Fourier spectrum for every data column, so we need to define how many plots we want to have. If we take only
columns, we can display them all in one go.

Second, the Fourier transform results in twice the number of complex coefficients (positive and negative) of which we only need the first
half.

Third, the Fourier transform outputs complex numbers. To display the ‘amplitude’ of a frequency (the coefficient corresponding to the
amplitude of the sine wave with that frequency) we take the absolute value of the complex numbers.

from scipy.fftpack import fft

data_back_fft = fft(data_back, axis=0)

PYTHON

no_win = 2

rows = data_back.shape[0]

freqs = (sr/2)*linspace(0, 1, int(rows/2))

amplitudes_back = (2.0 / rows) * abs(data_back_fft[:rows//2, :2])

fig, axes = subplots(figsize=(6, 5), ncols=1, nrows=no_win, sharex=False)

names = df_back.columns[:2]

for index, ax in enumerate(axes.flat):

 axes[index].plot(freqs, amplitudes_back[:, index])

 axes[index].set_xlim(0, 8)

 axes[index].set(ylabel=f'Amplitude {names[index]}')

axes[index].set(xlabel='Frequency (Hz)');

show()

PYTHON

We can see that in these two channels, the main amplitude contributions lie in the low frequencies, below 2 Hz.

Let us compare the corresponding figure for the case of seizure activity:

data_epil_fft = fft(data_epil, axis=0)

PYTHON

fig, axes = subplots(figsize=(6, 5), ncols=1, nrows=no_win, sharex=False)

names = df_epil.columns[:2]

amplitudes_epil = (2.0 / rows) * abs(data_epil_fft[:rows//2, :2])

for index, ax in enumerate(axes.flat):

 axes[index].plot(freqs, amplitudes_epil[:, index])

 axes[index].set_xlim(0, 12)

 axes[index].set(ylabel=f'Amplitude {names[index]}')

axes[index].set(xlabel='Frequency (Hz)');

show()

PYTHON

The main frequency of the epileptic rhythm is between 2 and 3 Hz.
As we can see above in the Fourier spectra above, the amplitudes are high for low frequencies and tend to decrease with increasing
frequency. Sometimes it is useful to see the high frequencies enhanced. This can be achieved with a logarithmic plot of the powers.

fig, axes = subplots(figsize=(6, 6), ncols=1, nrows=no_win, sharex=False)

for index, ax in enumerate(axes.flat):

 axes[index].plot(freqs, amplitudes_back[:, index])

 axes[index].set_xlim(0, 30)

 axes[index].set(ylabel=f'Amplitude {names[index]}')

 axes[index].set_yscale('log')

axes[no_win-1].set(xlabel='Frequency (Hz)');

fig.suptitle('Logarithmic Fourier Spectra of Background EEG', fontsize=16);

show()

PYTHON

And for the seizure data:

fig, axes = subplots(figsize=(6, 10), ncols=1, nrows=no_win, sharex=False)

for index, ax in enumerate(axes.flat):

 axes[index].plot(freqs, amplitudes_epil[:, index])

 axes[index].set_xlim(0, 30)

 axes[index].set(ylabel=f'Power {names[index]}')

 axes[index].set_yscale('log')

axes[no_win-1].set(xlabel='Frequency (Hz)');

fig.suptitle('Logarithmic Fourier Spectra of Seizure EEG', fontsize=16);

show()

PYTHON

In the spectrum of the absence data, it is now more obvious that there are further maxima at 6, 9, 12, and perhaps 15Hz. These are
integer multiples or ‘harmonics’ of the basic frequency at around 3Hz, also referred to as the fundamental frequency.

A feature that can be used as a summary statistic, is to caclulate the band power for each channel. The band power can be obtained as
the sum of all powers within a specified range of frequencies, also called the ‘band’. The band power thus represents a single number.

Calculate and display the Fourier spectra of the first two channels filtered between 4 and 12 Hz for the absence seizure data.
Can you find harmonics?

DIY2: FOURIER SPECTRA OF FILTERED DATA

Solution

data_epil_filt = data_filter(data_epil, sr, 4, 12)

data_epil_fft = fft(data_epil_filt, axis=0)

rows = data_epil.shape[0]

freqs = (sr/2)*linspace(0, 1, int(rows/2))

amplitudes_epil = (2.0 / rows) * abs(data_epil_fft[:rows//2, :no_win])

fig, axes = subplots(figsize=(6, 10), ncols=1, nrows=no_win, sharex=False)

for index, ax in enumerate(axes.flat):

 axes[index].plot(freqs, amplitudes_epil[:, index])

 axes[index].set_xlim(0, 12)

 axes[index].set(ylabel=f'Amplitudes {names[index]}')

axes[no_win-1].set(xlabel='Frequency (Hz)');

fig.suptitle('Fourier Spectra of Seizure EEG', fontsize=16);

show()

PYTHON

Cross-Correlation Matrix
As one example of a multivariate analysis of time series data, we can calculate the cross-correlation matrix.

Here it is done for the background:

The diagonal is set to zero. This is done to improve the visual display. If left to one, the diagonal tends to dominate the visual impression
even though it is trivial and nothing can be learned from it.

Looking at the non-diagonal elements, we find:

two strongly correlated series (indices 5 and 7)

two strongly anti-correlated series (indices 3 and 4)

a block of pronounced correlations between series with indices 4 through 9)

corr_matrix_back = corrcoef(data_back, rowvar=False)

fill_diagonal(corr_matrix_back, 0)

fig, ax = subplots(figsize = (8,8))

im = ax.imshow(corr_matrix_back, cmap='coolwarm');

fig.colorbar(im, orientation='horizontal', shrink=0.68);

show()

PYTHON

Calculate the correlation matrix for the seizure data and compare the correlation pattern to the one from the background data.

DIY3: DISPLAY THE CORRELATION MATRIX FOR THE SEIZURE DATA

Solution

We find - a number of pairs of strongly correlated series - two strongly anti-correlated series (in- dices 3 and 4) - a block of
pronounced correlations between series with indices 4 through 9).

So interestingly, while the time series changes dramatically in shape, the correlation pattern still shows some qualitative
resemblance.

All results shown so far, represent the recording of the segment of 6 seconds chosen at the beginning. The human brain produces time-
dependent voltage changes 24 hours a day and as seeing only a few seconds is only a partial view. The next step to investigate is to

corr_matrix_epil = corrcoef(data_epil, rowvar=False)

fill_diagonal(corr_matrix_epil, 0)

fig, ax = subplots(figsize = (8,8))

im = ax.imshow(corr_matrix_epil, cmap='coolwarm');

fig.colorbar(im, orientation='horizontal', shrink=0.68);

show()

PYTHON

show how the features found for one segment vary over time.

Exercises

Pathological Human Brain Rhythms
Look at the image of brain activity from a child at the start of an epileptic seizure. It shows 4 seconds of evolution of the first 10
channels of a seizure rhythm at sampling rate sr=1024.

END OF CHAPTER EXERCISES

path = 'data/P1_Seizure1.csv'

data = read_csv(path, delimiter=r"\s+")

data_P1 = data.to_numpy()

sr = 1024

period = 4

channels = 10

plot_series(data_P1[:sr*period, :channels], sr);

show()

PYTHON

Using the code from this lesson, import the data from the file P1_Seizure1.csv and generate an overview of uni- and
multivariate features in the following form:

1. Pick the first two seconds of the recording as background, the last two second as epileptic seizure rhythm. Use the first ten
channels in both cases. Data should have the shape (2048, 10).

2. Filter the data to get rid of frequencies below 1 Hz and frequencies faster than 20 Hz.

3. Plot time series of both.

4. Fourier transform both filtered data sets and display the Fourier spectra of the first 4 channels. What are the strongest
frequencies in the two sets?

5. Plot the correlation matrices of both data sets. Which channels show the strongest change in correlations?

Solution

Q1
Extract data for first and last two seconds

from pandas import read_csv

from numpy import arange, zeros, linspace, sin, pi, c_, mean, var, array

from numpy import correlate, corrcoef, fill_diagonal, amin, amax, asarray

from numpy import around, triu_indices

from numpy.ma import masked_less, masked_greater

from scipy.fftpack import fft

from matplotlib.pyplot import subplots, yticks, legend, axis, figure, show

PYTHON

sr = 1024

duration = 2 # seconds

data_n = data.to_numpy()

dat_back = data.iloc[:duration*sr, :10]

dat_back = data_n[:duration*sr, :10]

dat_epil = data_n[data_n.shape[0] - duration*sr:, :10]

time = linspace(0, 1, duration*sr)

print(dat_back.shape, dat_epil.shape, time.shape)

PYTHON

(2048, 10) (2048, 10) (2048,)

OUTPUT

Q2 and Q3
Filter and display data

def data_filter(data, sr, low, high):

 """

 Filtering of multiple time series.

 data: nxm numpy array. Rows are time points, columns are recordings

 sr: sampling rate, same time units as period

 low: Low cut-off frequency (high-pass filter)

 high: High cut-off frequency (low-pass filter)

 return: filtered data

 """

 from scipy.signal import butter, sosfilt

 order = 5

 filter_settings = [low, high, order]

 sos = butter(order, (low,high), btype='bandpass', fs=sr, output='sos')

 data_filtered = zeros((data.shape[0], data.shape[1]))

 for index, column in enumerate(data.transpose()):

 forward = sosfilt(sos, column)

 backwards = sosfilt(sos, forward[-1::-1])

 data_filtered[:, index] = backwards[-1::-1]

 return data_filtered

PYTHON

dat_back_filt = data_filter(dat_back, sr, 1, 20)

(fig, ax) = plot_series(dat_back_filt, sr)

fig.suptitle('First two seconds: Background EEG', fontsize=16);

show()

PYTHON

dat_epil_filt = data_filter(dat_epil, sr, 1, 20)

(fig, ax) = plot_series(dat_epil_filt, sr)

fig.suptitle('Last 2 seconds: Seizure EEG', fontsize=16);

show()

PYTHON

Q4
Fourier Transform

You can see the frequencies with largest power visually from a display of the Fourier spectrum. Here is an example code how to
extract those values for each channel using Numpy functions.

rows = dat_back.shape[0]

dat_back_fft = fft(dat_back_filt, axis=0)

powers_back2 = (2.0 / rows) * abs(dat_back_fft[:rows//2, :])

dat_epil_fft = fft(dat_epil_filt, axis=0)

powers_epil2 = (2.0 / rows) * abs(dat_epil_fft[:rows//2, :])

PYTHON

Get the maxima of powers for each channel

powermax_back2 = amax(powers_back2, axis=0)

powermax_epil2 = amax(powers_epil2, axis=0)

Get the frequency index of that maximum

powermax_back2_index = zeros(powers_back2.shape[1])

for ind, pow in enumerate(list(powers_back2.transpose())):

 pow_ind = list(pow).index(powermax_back2[ind])

 powermax_back2_index[ind] = pow_ind

powermax_epil2_index = zeros(powers_epil2.shape[1])

for ind, pow in enumerate(list(powers_epil2.transpose())):

 pow_ind = list(pow).index(powermax_epil2[ind])

 powermax_epil2_index[ind] = pow_ind

powermax_back2_freq = asarray(powermax_back2_index)*(sr / 2 / powers_back2.shape[0])

powermax_epil2_freq = asarray(powermax_epil2_index)*(sr / 2 / powers_epil2.shape[0])

print('Frequencies of max power in background (Hz): ', '\n', around(powermax_back2_freq, decimals=1))

print('')

print('Frequencies of max power in seizure (Hz): ', '\n', around(powermax_epil2_freq, decimals=1))

#print(powermax_back2_freq, '\n', powermax_epil2_freq)

fig, ax = subplots(nrows=2, figsize=(6,9))

binwidth = 1

(counts1, bins1, bars1) = ax[0].hist(powermax_back2_freq, bins=arange(0, 50 + binwidth, binwidth))

ax[0].set_xlim(0, 30)

ax[0].set_ylim(0, 10)

ax[0].set(xlabel='Frequency (Hz), Background')

(counts2, bins2, bars2) = ax[1].hist(powermax_epil2_freq, bins=arange(0, 50 + binwidth, binwidth))

ax[1].set_xlim(0, 30)

ax[1].set_ylim(0, 10)

ax[1].set(xlabel='Frequency (Hz), Seizure');

show()

PYTHON

Frequencies of max power in background (Hz):

 [2.5 11. 4.5 10.5 10.5 1.5 10.5 10.5 10.5 11.]

Frequencies of max power in seizure (Hz):

 [6. 7.5 10. 10. 12. 8. 3.5 7. 7. 8.]

(0.0, 30.0)

(0.0, 10.0)

(0.0, 30.0)

(0.0, 10.0)

OUTPUT

Fourier spectrum with max frequency

print('Maximum count: background: ', amax(counts1))

print('Maximum count: seizure: ', amax(counts2))

print('Frequency with maximum count: background: ', '10-11 Hz')

print('Frequency with maximum count: seizure: ', ' 7- 8 Hz')

PYTHON

Maximum count: background: 5.0

Maximum count: seizure: 3.0

Frequency with maximum count: background: 10-11 Hz

Frequency with maximum count: seizure: 7- 8 Hz

OUTPUT

freqs = (sr/2)*linspace(0, 1, int(rows/2))

fig, axes = subplots(figsize=(6, 14), ncols=1, nrows=4, sharex=False)

axes[0].plot(freqs, powers_back2[:, 3])

axes[0].set_xlim(0, 20)

PYTHON

axes[0].set_ylim(0, 12)

PYTHON

axes[0].set(ylabel=f'Power channel 3')

axes[0].set(xlabel='Frequency (Hz)');

axes[1].plot(time, dat_back_filt[:, 3], c='r')

axes[1].set(xlabel='Time (s)');

axes[1].set_ylim(-50, 60)

PYTHON

axes[2].plot(freqs, powers_epil2[:, 3])

axes[2].set_xlim(0, 20)

PYTHON

axes[2].set_ylim(0, 12)

PYTHON

axes[2].set(ylabel='Power channel index 1')

axes[2].set(xlabel='Frequency (Hz)');

axes[3].plot(time, dat_epil_filt[:, 3], c='r')

axes[3].set(xlabel='Time (s)');

axes[3].set_ylim(-50, 60)

PYTHON

show()

PYTHON

Q5 ### Correlation Matrix

corr_matrix_back2 = corrcoef(dat_back_filt, rowvar=False)

fill_diagonal(corr_matrix_back2, 0)

corr_matrix_epil2 = corrcoef(dat_epil_filt, rowvar=False)

fill_diagonal(corr_matrix_epil2, 0)

fig, ax = subplots(figsize = (8,8), ncols=2)

im1 = ax[0].imshow(corr_matrix_back2, cmap='coolwarm');

fig.colorbar(im1, ax=ax[0], orientation='horizontal', shrink=0.8)

PYTHON

im2 = ax[1].imshow(corr_matrix_epil2, cmap='coolwarm');

fig.colorbar(im2, ax=ax[1], orientation='horizontal', shrink=0.8);

show()

PYTHON

Hist of Correlation Coefficients

channels = dat_back.shape[1]

corr_coeffs_back2 = corr_matrix_back2[triu_indices(channels, k=1)]

corr_coeffs_epil2 = corr_matrix_epil2[triu_indices(channels, k=1)]

fig, ax = subplots(nrows=2)

ax[0].hist(corr_coeffs_back2, bins = 12);

ax[0].set_xlim(-1, 1)

PYTHON

ax[1].hist(corr_coeffs_epil2, bins = 12);

ax[1].set_xlim(-1, 1);

show()

PYTHON

Channel Correlations

corr_coeffs_back2_mean = mean(abs(corr_matrix_back2), axis=0)

corr_coeffs_epil2_mean = mean(abs(corr_matrix_epil2), axis=0)

fig, ax = subplots(nrows=2, figsize=(5,9))

bins = arange(corr_coeffs_back2_mean.shape[0])

ax[0].bar(bins, corr_coeffs_back2_mean);

ax[0].set_xlabel('Background')

ax[0].set_ylim(0, 0.4)

PYTHON

ax[1].bar(bins, corr_coeffs_epil2_mean);

ax[1].set_xlabel('Seizure')

ax[1].set_ylim(0, 0.4);

show()

PYTHON

corr_back2_mean = mean(corr_coeffs_back2_mean)

corr_epil2_mean = mean(corr_coeffs_epil2_mean)

print('Average correlation background: ', around(corr_back2_mean, decimals=2))

print('Average correlation seizure: ', around(corr_epil2_mean, decimals=2))

PYTHON

Average correlation background: 0.23

Average correlation seizure: 0.2

OUTPUT

Channels with strongest correlations during the seizure

A horizontal line can be used to indicate the threshold:

threshold = 0.2

corr_coeffs_epil2_large = corr_coeffs_epil2_mean > threshold

corr_coeffs_epil2_large

PYTHON

array([False, False, False, True, False, True, True, True, False,

 True])

OUTPUT

fig, ax = subplots()

bins = arange(corr_coeffs_back2_mean.shape[0])

ax.bar(bins, corr_coeffs_epil2_mean);

ax.set_xlabel('Seizure')

ax.set_ylim(0, 0.4);

ax.axhline(y=threshold, c='r');

show()

PYTHON

To find the indices of the channels that are larger than the threshold (i.e. those displaying True), we can use Numpy function
nonzero:

plot_series is a Python function created to display multiple timeseries plots.

Data filtering is applied to take out specific and relevant components.

The Fourier spectrum decomposes the time series into a sum of sine waves.

Cross-correlation matrix is used for multivariate analysis.

from numpy import nonzero

nonzero(corr_coeffs_epil2_large)

PYTHON

(array([3, 5, 6, 7, 9]),)

OUTPUT

KEY POINTS

