
Content from Data Frames - Part 1

Last updated on 2024-05-24 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

Dataframes 1: Import DataDataframes 1: Import Data

OVERVIEW

Questions

How is data read into a dataframe?

What are different ways to manipulate data in dataframes?

What makes data visualisation simple in Python?

Objectives

Import data set as Pandas dataframe

Inspect data frame and access data

Produce an overview of data features

Create data plots using Matplotlib

Data Handling

http://127.0.0.1:7336/01-data_frames_1.html
https://github.com/carpentries/workbench-template-rmd/edit/main/episodes/01-data_frames_1.Rmd
https://github.com/carpentries/workbench-template-rmd/edit/main/episodes/01-data_frames_1.Rmd
http://127.0.0.1:7336/01-data_frames_1.pdf
http://127.0.0.1:7336/01-data_frames_1.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1
https://www.youtube.com/watch?v=jdWOAzK81VE

Dataframes 1: Basic StatisticsDataframes 1: Basic Statistics

Dataframes 1: Data VisualisationDataframes 1: Data Visualisation

Indexing of Arrays

For Loop through Array

Basic Statistics (distributions, mean, median, standard deviation)

Challenge: The diabetes data set
Here is a screenshot of the so-called diabetes data set. It is taken from this webpage and it is one of the example data sets used to
illustrate machine learning functionality in scikit-learn (Part III and Part IV of the course).

PREREQUISITES

https://www.youtube.com/watch?v=zw6t3yHEqGU
https://www.youtube.com/watch?v=mljXcIzx4ps
https://www4.stat.ncsu.edu/~boos/var.select/diabetes.tab.txt
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html

This figure captures only the top part of the data. On the webpage you need to scroll down considerably to view the whole content. Thus, to
get an overview of the dataset is the first main task in Data Science.

introduces code to read and inspect the data

works with a specific data frame and extracts some techniques to get an overview

discusses the concept ‘distribution’ as a way of summarising data in a single figure

access the data

check the content

produce a summary of basic properties

In this lesson we will only look at univariate features where each data column is studied independently of the others. Further
properties and bivariate features will be the topic of the next lesson.

Work Through Example

The small practice data file for this section is called ‘everleys_data.csv’ and can be downloaded using the link given above in
“Materials for this Lesson”. To start, please create a subfolder called ‘data’ in the current directory and put the data file in it. It can
now be accessed using the relative path data/everleys_data.csv or data\everleys_data.csv, respectively.

The file everleys_data.csv contains blood concentrations of calcium and sodium ions from 17 patients with Everley’s syndrome.
The data are taken from a BMJ statistics tutorial. The data are stored as comma-separated values (csv), two values for each
patient.

To get to know a dataset, we will use the Pandas package and the Matplotlib plotting library. The Pandas package for data
science is included in the Anaconda distribution of Python. Check this link for installation instructions to get started.

If you are not using the Anaconda distribution, please refer to these guidelines.

To use the functions contained in Pandas they need to be imported. Our dataset is in ‘.csv’ format, and we therefore need to read it
from a csv file. For this, we import the function read_csv. This function will create a Pandas dataframe.

THE LESSON

TO GET TO KNOW A DATASET YOU NEED TO

READING DATA INTO A PANDAS DATAFRAME

https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one/7-t-tests
https://pandas.pydata.org/getting_started.html
https://pandas.pydata.org/docs/getting_started/install.html

Executing this code does not lead to any output on the screen. However, the function is now ready to be used. To use it, we type its name
and provide the required arguments. The following code should import the Everley’s data into your JupyterLab notebook (or other Python
environment):

This code uses the read_csv function from Pandas to read data from a data file, in this case a file with extension ‘.csv’. Note that the
location of the data file is specified within quotes by the relative path to the subfolder ‘data’ followed by the file name. Use the JupyterLab
file browser to check that subfolder exists and has the file in it.

from pandas import read_csv

PYTHON

for Mac OSX and Linux

(please go to the next cell if using Windows)

df = read_csv("data/everleys_data.csv")

PYTHON

Please uncomment for Windows

(please go to previous cell if using Mac OSX or Linux)

df = read_csv("data\everleys_data.csv")

PYTHON

After execution of the code, the data are contained in a variable called df. This is a structure referred to as a Pandas DataFrame.

A Pandas dataframe is a 2-dimensional labeled data structure with columns of potentially different
types. You can think of it as a spreadsheet.

To see the contents of df, simply use:

df

PYTHON

https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#dataframe

(Compare with the result of print(df) which displays the contents in a different format.)

The output shows in the first column an index, integers from 0 to 17; and the calcium and sodium concentrations in columns 2 and 3,
respectively. The default indexing starts from zero (Python is a ‘zero-based’ programming language).

In a dataframe, the first column is referred to as Indices, the first row is referred to as Labels. Note that the row with the labels is excluded
from the row count. Similarly, the row with the indices is excluded from the column count.

For large data sets, the function head is a convenient way to get a feel of the dataset.

Without any input argument, this displays the first five data lines of the dataframe. You can specify alter the number of rows displayed by
including a single integer as argument, e.g. head(10).

If you feel there are too many decimal places in the default view, you can restrict their number by using the round function:

 calcium sodium

0 3.455582 112.690980

1 3.669026 125.663330

2 2.789910 105.821810

3 2.939900 98.172772

4 5.426060 97.931489

5 0.715811 120.858330

6 5.652390 112.871500

7 3.571320 112.647360

8 4.300067 132.031720

9 1.369419 118.499010

10 2.550962 117.373730

11 2.894129 134.052390

12 3.664987 105.346410

13 1.362779 123.359490

14 3.718798 125.021060

15 1.865868 112.075420

16 3.272809 117.588040

17 3.917591 101.009870

OUTPUT

df.head()

PYTHON

 calcium sodium

0 3.455582 112.690980

1 3.669026 125.663330

2 2.789910 105.821810

3 2.939900 98.172772

4 5.426060 97.931489

OUTPUT

df.head().round(2)

PYTHON

While we can see how many rows there are in a dataframe when we display the whole data frame and look at the last index, there is a
convenient way to obtain the number directly:

You could see above, that the columns of the dataframe have labels. To see all labels:

Now we can count the labels to obtain the number of columns:

And if you want to have both the number of the rows and the columns together, use shape. Shape returns a tuple of two numbers, first the
number of rows, then the number of columns.

 calcium sodium

0 3.46 112.69

1 3.67 125.66

2 2.79 105.82

3 2.94 98.17

4 5.43 97.93

OUTPUT

no_rows = len(df)

print('Data frame has', no_rows, 'rows')

PYTHON

Data frame has 18 rows

OUTPUT

column_labels = df.columns

print(column_labels)

PYTHON

Index(['calcium', 'sodium'], dtype='object')

OUTPUT

no_columns = len(column_labels)

print('Data frame has', no_columns, 'columns')

PYTHON

Data frame has 2 columns

OUTPUT

Notice that shape (like columns) is not followed by round parenthesis. It is not a function that can take arguments. Technically, shape is a
‘property’ of the dataframe.

To find out what data type is contained in each of the columns, us dtypes, another ‘property’:

In this case, both columns contain floating point (decimal) numbers.

Download the data file ‘loan_data.csv’ using the link given above in “Materials for this Lesson”. It contains data that can be used for
the assessment of loan applications. Read the data into a DataFrame. It is best to assign it a name other than ‘df’ (to avoid
overwriting the Evereley data set).

Display the first ten rows of the Loan data set to see its contents. It is taken from a tutorial on Data Handling in Python which you
might find useful for further practice.

From this exercise we can see that a dataframe can contain different types of data: real numbers
(e.g. LoanAmount), integers (ApplicantIncome), categorical data (Gender), and strings (Loan_ID).

df_shape = df.shape

print('Data frame has', df_shape[0], 'rows and',df_shape[1], 'columns')

PYTHON

Data frame has 18 rows and 2 columns

OUTPUT

df.dtypes

PYTHON

calcium float64

sodium float64

dtype: object

OUTPUT

DIY1: READ DATA INTO A DATAFRAME

https://www.analyticsvidhya.com/blog/2016/01/complete-tutorial-learn-data-science-python-scratch-2/

Solution

Accessing data in a DataFrame
If a datafile is large and you only want to check the format of data in a specific column, you can limit the display to that column. To access
data contained in a specific column of a dataframe, we can use a similar convention as in a Python dictionary, treating the column names as
‘keys’. E.g. to show all rows in column ‘Calcium’, use:

from pandas import read_csv

dataframe from .csv file

df_loan = read_csv("data/loan_data.csv")

display contents

df_loan.head(10)

PYTHON

 Loan_ID Gender Married ... Loan_Amount_Term Credit_History Property_Area

0 LP001015 Male Yes ... 360.0 1.0 Urban

1 LP001022 Male Yes ... 360.0 1.0 Urban

2 LP001031 Male Yes ... 360.0 1.0 Urban

3 LP001035 Male Yes ... 360.0 NaN Urban

4 LP001051 Male No ... 360.0 1.0 Urban

5 LP001054 Male Yes ... 360.0 1.0 Urban

6 LP001055 Female No ... 360.0 1.0 Semiurban

7 LP001056 Male Yes ... 360.0 0.0 Rural

8 LP001059 Male Yes ... 240.0 1.0 Urban

9 LP001067 Male No ... 360.0 1.0 Semiurban

[10 rows x 12 columns]

OUTPUT

df['calcium']

PYTHON

To access individual rows of a column we use two pairs of square brackets:

Here all rules for slicing can be applied. As for lists and tuples, the indexing of rows is semi-inclusive, lower boundary included, upper
boundary excluded. Note that the first pair of square brackets refers to a column and the second pair refers to the rows. This is different
from e.g. accessing items in a nested list.

Accessing items in a Pandas dataframe is analogous to accessing the values in a Python dictionary by referring to its keys.

To access non-contiguous elements, we use an additional pair of square brackets (as if for a list within a list):

Another possibility to index and slice a dataframe is the use of the ‘index location’ or iloc property. It refers first to rows and then to
columns by index, all within a single pair of brackets. For example, to get all rows of the first column (index 0), you use:

0 3.455582

1 3.669026

2 2.789910

3 2.939900

4 5.426060

5 0.715811

6 5.652390

7 3.571320

8 4.300067

9 1.369419

10 2.550962

11 2.894129

12 3.664987

13 1.362779

14 3.718798

15 1.865868

16 3.272809

17 3.917591

Name: calcium, dtype: float64

OUTPUT

df['calcium'][0:3]

PYTHON

0 3.455582

1 3.669026

2 2.789910

Name: calcium, dtype: float64

OUTPUT

df['calcium'][[1, 3, 7]]

PYTHON

1 3.669026

3 2.939900

7 3.571320

Name: calcium, dtype: float64

OUTPUT

https://docs.python.org/3/tutorial/introduction.html

To display only the first three calcium concentrations, you use slicing, remembering that the upper bound is excluded):

To access non-consecutive values, we can use a pair of square brackets within the pair of square brackets:

Similarly, we can access the values from multiple columns:

df.iloc[:, 0]

PYTHON

0 3.455582

1 3.669026

2 2.789910

3 2.939900

4 5.426060

5 0.715811

6 5.652390

7 3.571320

8 4.300067

9 1.369419

10 2.550962

11 2.894129

12 3.664987

13 1.362779

14 3.718798

15 1.865868

16 3.272809

17 3.917591

Name: calcium, dtype: float64

OUTPUT

df.iloc[0:3, 0]

PYTHON

0 3.455582

1 3.669026

2 2.789910

Name: calcium, dtype: float64

OUTPUT

df.iloc[[2, 4, 7], 0]

PYTHON

2 2.78991

4 5.42606

7 3.57132

Name: calcium, dtype: float64

OUTPUT

To pick only the even rows from the two columns, check this colon notation:

The number after the second colon indicates the stepsize.

Display the calcium and sodium concentrations of all patients except the first. Check the model solution at the bottom for options.

df.iloc[[2, 4, 7], :]

PYTHON

 calcium sodium

2 2.78991 105.821810

4 5.42606 97.931489

7 3.57132 112.647360

OUTPUT

df.iloc[:18:2, :]

PYTHON

 calcium sodium

0 3.455582 112.690980

2 2.789910 105.821810

4 5.426060 97.931489

6 5.652390 112.871500

8 4.300067 132.031720

10 2.550962 117.373730

12 3.664987 105.346410

14 3.718798 125.021060

16 3.272809 117.588040

OUTPUT

DIY2: SELECT DATA FROM DATAFRAME

Solution

Mixing the ways to access specific data in a dataframe can be confusing and needs practice.

Search for missing values
Some tables contain missing entries. You can check a dataframe for such missing entries. If no missing entry is found, the function isnull
will return False.

This shows that there are no missing entries in our dataframe.

df[['calcium', 'sodium']][1:]

PYTHON

 calcium sodium

1 3.669026 125.663330

2 2.789910 105.821810

3 2.939900 98.172772

4 5.426060 97.931489

5 0.715811 120.858330

6 5.652390 112.871500

7 3.571320 112.647360

8 4.300067 132.031720

9 1.369419 118.499010

10 2.550962 117.373730

11 2.894129 134.052390

12 3.664987 105.346410

13 1.362779 123.359490

14 3.718798 125.021060

15 1.865868 112.075420

16 3.272809 117.588040

17 3.917591 101.009870

OUTPUT

df.isnull().any()

PYTHON

calcium False

sodium False

dtype: bool

OUTPUT

In the Loan data set, check the entry ‘Self-employed’ for ID LP001059. It shows how a missing value is represented as ‘NaN’ (not a
number).

Verify that the output of isnull in this case is True

Solution

Basic data features

Summary Statistics
To get a summary of basic data features use the function describe:

DIY3: FIND NAN IN DATAFRAME

df_loan['Self_Employed'][8]

PYTHON

nan

OUTPUT

df_loan['Self_Employed'][8:9].isnull()

PYTHON

8 True

Name: Self_Employed, dtype: bool

OUTPUT

description = df.describe()

description

PYTHON

The describe function produces a new dataframe (here called ‘description’) that contains the number of samples, the mean, the standard
deviation, minimum, 25th, 50th, 75th percentile, and the maximum value for each column of the data. Note that the indices of the rows have
now been replaced by strings. To access rows, it is possible to refer to those names using the loc property. E.g. to access the mean of the
calcium concentrations from the description, each of the following is valid:

Use your own .csv data set to practice. (If you don’t have a data set at hand, any excel table can be exported as .csv.) Read it into
a dataframe, check its header, access individual values or sets of values. Create a statistics using describe and check for missing
values using .isnull.

Solution

[ad libitum]

Iterating through the columns
Now we know how to access all data in a dataframe and how to get a summary statistics over each column.

 calcium sodium

count 18.000000 18.000000

mean 3.174301 115.167484

std 1.306652 10.756852

min 0.715811 97.931489

25% 2.610699 107.385212

50% 3.364195 115.122615

75% 3.706355 122.734200

max 5.652390 134.052390

OUTPUT

Option 1

description.loc['mean']['calcium']

Option 2

description.loc['mean'][0]

Option 3

description['calcium']['mean']

Option 4

description['calcium'][1]

PYTHON

3.1743005405555555

3.1743005405555555

3.1743005405555555

3.1743005405555555

OUTPUT

DIY4: PRACTICE

Here is code to iterate through the columns and access the first two concentrations:

As a slightly more complex example, we access the median (‘50%’) of each column in the description and add it to a list:

This approach is useful for data frames with a large number of columns. For instance, it is possible to then create a boxplot or histogram for
the means, medians etc. of the dataframe and thus to get an overview of all (comparable) columns.

Selecting a subset based on a template
An analysis of a data set may need to be done on part of the data. This can often be formulated by using a logical condition which specifies
the required subset.

For this we will assume that some of the data are labelled ‘0’ and some are labelled ‘1’. Let us therefore see how to add a new column to
our Evereleys data frame which contains the (in this case arbitrary) labels.

First we randomly create as many labels as we have rows in the data frame. We can use the randint function which we import from
‘numpy.random’. randint in its simple form takes two arguments. First the upper bound of the integer needed, where by default it starts
from zero. As Python is exclusive on the upper bound, providing ‘2’ will thus yield either ‘0’ or ‘1’ only.

for col in df:

 print(df[col][0:2])

PYTHON

0 3.455582

1 3.669026

Name: calcium, dtype: float64

0 112.69098

1 125.66333

Name: sodium, dtype: float64

OUTPUT

conc_medians = list()

for col in df:

 conc_medians.append(df[col].describe()['50%'])

print('The columns are: ', list(df.columns))

print('The medians are: ', conc_medians)

PYTHON

The columns are: ['calcium', 'sodium']

The medians are: [3.3641954, 115.122615]

OUTPUT

Note how we obtain the number of rows (18) using len and do not put it directly into the code.

Now we create a new data column in our df dataframe which contains the labels. To create a new column, you can simply refer to a column
name that does not yet exist and assign values to it. Let us call it ‘gender’, assuming that ‘0’ represents male and ‘1’ represents female.

As gender specification can include more than two labels, try to create a column with more than two randomly assigned labels e.g. (0, 1, 2).

Now we can use the information contained in ‘gender’ to filter the data by gender. To achieve this, we use a conditional statement. Let us
check which of the rows are labelled as ‘1’:

from numpy.random import randint

no_rows = len(df)

randomLabel = randint(2, size=no_rows)

print('Number of rows: ', no_rows)

print('Number of Labels:', len(randomLabel))

print('Labels: ', randomLabel)

PYTHON

Number of rows: 18

Number of Labels: 18

Labels: [0 0 1 0 1 0 1 1 0 0 1 0 0 1 1 1 1 0]

OUTPUT

df['gender'] = randomLabel

df.head()

PYTHON

 calcium sodium gender

0 3.455582 112.690980 0

1 3.669026 125.663330 0

2 2.789910 105.821810 1

3 2.939900 98.172772 0

4 5.426060 97.931489 1

OUTPUT

df['gender'] == 1

PYTHON

If we assign the result of the conditional statement (Boolean True or False) to a variable, then this variable can act as a template to filter the
data. If we call the data frame with that variable, we will only get the rows where the condition was found to be True:

Using the Boolean, we only pick the rows that are labelled ‘1’ and thus get a subset of the data according to the label.

Modify the code to calculate the number of samples labelled 0 and check the number of rows of that subset.

0 False

1 False

2 True

3 False

4 True

5 False

6 True

7 True

8 False

9 False

10 True

11 False

12 False

13 True

14 True

15 True

16 True

17 False

Name: gender, dtype: bool

OUTPUT

df_female = df['gender'] == 1

df[df_female]

PYTHON

 calcium sodium gender

2 2.789910 105.821810 1

4 5.426060 97.931489 1

6 5.652390 112.871500 1

7 3.571320 112.647360 1

10 2.550962 117.373730 1

13 1.362779 123.359490 1

14 3.718798 125.021060 1

15 1.865868 112.075420 1

16 3.272809 117.588040 1

OUTPUT

DIY5: USING A TEMPLATE

Solution

Visualisation of data
It is easy to see from the numbers that the concentrations of sodium are much higher than that of calcium. However, to also compare the
medians, percentiles and the spread of the data it is better to use visualisation.

The simplest way of visualisation is to use Pandas functionality which offers direct ways of plotting. Here is an example where a boxplot is
created for each column:

from numpy.random import randint

no_rows = len(df)

randomLabel = randint(2, size=no_rows)

df['gender'] = randomLabel

df_male = df['gender'] == 0

no_males = len(df[df_male])

print(no_males, 'samples are labelled "male".')

PYTHON

11 samples are labelled "male".

OUTPUT

df = read_csv("data/everleys_data.csv")

df.boxplot()

PYTHON

By default, boxplots are shown for all columns if no further argument is given to the function (empty round parenthesis). As the calcium plot
is rather squeezed we may wish to see it individually. This can be done by specifying the calcium column as an argument:

Boxplot of calcium results

df.boxplot(column='calcium')

PYTHON

Plots using Matplotlib

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in
Python.

The above is an easy way to create boxplots directly on the dataframe. It is based on the library Matplotlib and specifically uses the pyplot
library. For simplicity, the code is put in a convenient Pandas function.

However, we are going to use Matplotlib extensively later on in the course, and we therefore now introduce the direct, generic way of using
it.

For this, we import the function subplots from the pyplot library:

The way to use subplots is to first set up a figure environment (below it is called ‘fig’) and an empty coordinate system (below called ‘ax’).
The plot is then done using one of the many methods available in Matplotlib. We apply it to the coordinate system ‘ax’.

As an example, let us create a boxplot of the calcium variable. As an argument of the function we need to specify the data. We can use the
values of the ‘calcium’ concentrations from the column with that name:

from matplotlib.pyplot import subplots, show

PYTHON

https://matplotlib.org/
https://matplotlib.org/stable/api/pyplot_summary.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.boxplot.html#matplotlib.pyplot.boxplot%7C

Note how following the actual plot we define the title of the plot by referring to the same coordinate system ax.

The value of subplots becomes apparent when we try to create more than one plot in a single figure.

Here is an example to create two boxplots next to each other. The keyword arguments to use is ‘ncols’ which is the number of figures per
row. ‘ncols=2’ indicates that you want to have two plots next to each other.

fig, ax = subplots()

ax.boxplot(df['calcium'])

PYTHON

ax.set_title('Boxplot of Everley Calcium')

show()

PYTHON

fig, ax = subplots(ncols=2)

ax[0].boxplot(df['calcium'])

PYTHON

Note that you now have to refer to each of the subplots by indexing the coordinate system ‘ax’. This figure gives a good overview of the
Everley’s data.

If you prefer to have the boxplots of both columns in a single figure, that can also be done:

ax[0].set_title('Calcium')

ax[1].boxplot(df['sodium'])

PYTHON

ax[1].set_title('Sodium');

show()

PYTHON

fig, ax = subplots(ncols=1, nrows=1)

ax.boxplot([df['calcium'], df['sodium']], positions=[1, 2])

PYTHON

Plot the boxplots of the ‘ApplicantIncome’ and the ‘CoapplicantIncome’ in the Loan data using the above code.

ax.set_title('Boxplot of Calcium (left) and Sodium (right)')

show()

PYTHON

DIY6: BOXPLOT FROM LOAN DATA

Solution

Histogram
Another good overview is the histogram: Containers or ‘bins’ are created over the range of values found within a column and the count of
the values for each bin is plotted on the vertical axis.

fig, ax = subplots(ncols=1, nrows=1)

ax.boxplot([df_loan['ApplicantIncome'], df_loan['CoapplicantIncome']], positions=[1, 2])

PYTHON

ax.set_title('Applicant Income (left) & Co-Applicant Income (right)');

show()

PYTHON

This also shows how to add labels to the axes and a title to the overall figure.

This uses the default value for the generation of the bins. It is set to 10 bins over the range of which values are found. The number of bins in
the histogram can be changed using the keyword argument ‘bins’:

fig, ax = subplots(ncols=2, nrows=1)

ax[0].hist(df['calcium'])

ax[0].set(xlabel='Calcium', ylabel='Count');

ax[1].hist(df['sodium'])

ax[1].set(xlabel='Sodium', ylabel='Count');

fig.suptitle('Histograms of Everley concentrations', fontsize=15);

show()

PYTHON

Note how the y-label of the right figure is not placed well. To correct for the placement of the labels and the title, you can use
tight_layout on the figure:

fig, ax = subplots(ncols=2, nrows=1)

ax[0].hist(df['calcium'], bins=5)

ax[0].set(xlabel='Calcium, 5 bins', ylabel='Count');

ax[1].hist(df['calcium'], bins=15)

ax[1].set(xlabel='Calcium, 15 bins', ylabel='Count');

fig.suptitle('Histograms with Different Binnings', fontsize=16);

show()

PYTHON

fig, ax = subplots(ncols=2, nrows=1)

ax[0].hist(df['calcium'], bins=5)

ax[0].set(xlabel='Calcium, 5 bins', ylabel='Count');

ax[1].hist(df['calcium'], bins=15)

ax[1].set(xlabel='Calcium, 15 bins', ylabel='Count');

fig.suptitle('Histograms with Different Binnings', fontsize=16);

fig.tight_layout()

show()

PYTHON

Take the loan data and display the histogram of the loan amount that people asked for. (Loan amounts are divided by 1000, i.e. in
k£ on the horizontal axis). Use e.g. 20 bins.

DIY7: CREATE THE HISTOGRAM OF A COLUMN

Solution

Handling the Diabetes Data Set
We now return to the data set that started our enquiry into the handling of data in a dataframe.

We will now:

Import the diabetes data from ‘sklearn’
Check the shape of the dataframe and search for NANs
Get a summary plot of one of its statistical quantities (e.g. mean) for all columns

First we import the data set and check its head. Wait until the numbers show below the code, it might take a while.

Histogram of loan amounts in k£

fig, ax = subplots()

ax.hist(df_loan['LoanAmount'], bins=20)

ax.set(xlabel='Loan amount', ylabel='Count');

ax.set_title('Histograms of Loan Amounts', fontsize=16);

show()

PYTHON

If you don’t see all columns, use the cursor to scroll to the right. Now let’s check the number of columns and rows.

There are 442 rows organised in 10 columns.

To get an overview, let us extract the mean of each column using ‘describe’ and plot all means as a bar chart. The Matplotlib function to plot
a bar chart is bar:

from sklearn import datasets

diabetes = datasets.load_diabetes()

X = diabetes.data

from pandas import DataFrame

df_diabetes = DataFrame(data=X)

df_diabetes.head()

PYTHON

 0 1 2 ... 7 8 9

0 0.038076 0.050680 0.061696 ... -0.002592 0.019907 -0.017646

1 -0.001882 -0.044642 -0.051474 ... -0.039493 -0.068332 -0.092204

2 0.085299 0.050680 0.044451 ... -0.002592 0.002861 -0.025930

3 -0.089063 -0.044642 -0.011595 ... 0.034309 0.022688 -0.009362

4 0.005383 -0.044642 -0.036385 ... -0.002592 -0.031988 -0.046641

[5 rows x 10 columns]

OUTPUT

no_rows = len(df_diabetes)

no_cols = len(df_diabetes.columns)

print('Rows:', no_rows, 'Columns:', no_cols)

PYTHON

Rows: 442 Columns: 10

OUTPUT

conc_means = list()

for col in df_diabetes:

 conc_means.append(df_diabetes[col].describe()['mean'])

print('The columns are: ', list(df_diabetes.columns))

print('The medians are: ', conc_means, 2)

PYTHON

The bars in this plot go up and down. Note, however, that the vertical axis has values ranging from -10 to +10 . This means that for
all practical purposes all means are zero. This is not a coincidence. The original values have been normalised to zero mean for the purpose
of applying some machine learning algorithm to them.

In this example, we see how important it is to check the data before working with them.

Exercises

The columns are: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The medians are: [-2.511816797794472e-19, 1.2307902309192911e-17, -2.2455642172282577e-16, -4.7975700837874

OUTPUT

fig, ax = subplots()

bins = range(10)

ax.bar(bins, conc_means);

show()

PYTHON

(-16) (-16)

Download the cervical cancer data set provided, import it using read_csv.

1. How many rows and columns are there?

2. How many columns contain floating point numbers (float64)?

3. How many of the subjects are smokers?

4. Calculate the percentage of smokers

5. Plot the age distribution (with e.g. 50 bins)

6. Get the mean and standard distribution of age of first sexual intercourse

END OF CHAPTER EXERCISES

Solution

Q1

Q2

df_cervix = read_csv("data/cervical_cancer.csv")

df_cervix.head(10)

cervix_rows, cervix_cols = len(df_cervix), len(df_cervix.columns)

print('Number of rows:', cervix_rows)

print('Number of columns:', cervix_cols)

PYTHON

 Age Number of sexual partners ... Citology Biopsy

0 18 4.0 ... 0 0

1 15 1.0 ... 0 0

2 52 5.0 ... 0 0

3 46 3.0 ... 0 0

4 42 3.0 ... 0 0

5 51 3.0 ... 0 1

6 26 1.0 ... 0 0

7 45 1.0 ... 0 0

8 44 3.0 ... 0 0

9 27 1.0 ... 0 0

[10 rows x 34 columns]

Number of rows: 668

Number of columns: 34

OUTPUT

df_types = df_cervix.dtypes == 'float64'

print('There are', df_types.sum(), 'columns with floating point numbers')

PYTHON

There are 24 columns with floating point numbers

OUTPUT

df_types

PYTHON

Q3

Age False

Number of sexual partners True

First sexual intercourse True

Num of pregnancies True

Smokes True

Smokes (years) True

Smokes (packs/year) True

Hormonal Contraceptives True

Hormonal Contraceptives (years) True

IUD True

IUD (years) True

STDs True

STDs (number) True

STDs:condylomatosis True

STDs:cervical condylomatosis True

STDs:vaginal condylomatosis True

STDs:vulvo-perineal condylomatosis True

STDs:syphilis True

STDs:pelvic inflammatory disease True

STDs:genital herpes True

STDs:molluscum contagiosum True

STDs:AIDS True

STDs:HIV True

STDs:Hepatitis B True

STDs:HPV True

STDs: Number of diagnosis False

Dx:Cancer False

Dx:CIN False

Dx:HPV False

Dx False

Hinselmann False

Schiller False

Citology False

Biopsy False

dtype: bool

OUTPUT

for col in df_cervix:

 print(type(df_cervix[col][0]))

cervix_smoker = df_cervix['Smokes'] == 1.0

PYTHON

Q4

<class 'numpy.int64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.float64'>

<class 'numpy.int64'>

<class 'numpy.int64'>

<class 'numpy.int64'>

<class 'numpy.int64'>

<class 'numpy.int64'>

<class 'numpy.int64'>

<class 'numpy.int64'>

<class 'numpy.int64'>

<class 'numpy.int64'>

OUTPUT

print('There are', cervix_smoker.sum(), 'smokers.')

print('This is', round(100*cervix_smoker.sum() / cervix_rows, 1), '% of the total.')

PYTHON

There are 96 smokers.

This is 14.4 % of the total.

OUTPUT

Q5

Q6

fig, ax = subplots()

ax.hist(df_cervix['Age'], bins=50)

ax.set_xlabel('Age', fontsize=20)

ax.set_ylabel('Count', fontsize=20)

ax.set_title('Age distribution of subjects', fontsize=24);

show()

PYTHON

int_mean = df_cervix['First sexual intercourse'].mean()

int_std = df_cervix['First sexual intercourse'].std()

print('Mean of age of first sexual intercourse: ', round(int_mean, 1))

print('Standard distribution of age of first sexual intercourse: ', round(int_std, 1))

PYTHON

Mean of age of first sexual intercourse: 17.1

Standard distribution of age of first sexual intercourse: 2.9

OUTPUT

Pandas package contains useful functions to work with dataframes.

iloc property is used to index and slice a dataframe.

describe function is used to get a summary of basic data features.

The simplest way of visualisation is to use Pandas functionality.

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python.

Content from Data Frames - Part 2

Last updated on 2024-05-24 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

KEY POINTS

OVERVIEW

Questions

What is bivariate or multivariate analysis?

How are bivariate properties of data interpreted?

How can a bivariate quantity be explained?

When to use the correlation matrix?

What are the ways to study relationships in data?

Objectives

Practise working with Pandas dataframes and Numpy arrays.

Bivariate analysis of Pandas dataframe / Numpy array.

The Pearson correlation coefficient ().

Correlation Matrix as an example of bivariate summary statistics.

PCC

http://127.0.0.1:7336/02-data_frames_2.html
https://github.com/carpentries/workbench-template-rmd/edit/main/episodes/02-data_frames_2.Rmd
https://github.com/carpentries/workbench-template-rmd/edit/main/episodes/02-data_frames_2.Rmd
http://127.0.0.1:7336/02-data_frames_2.pdf
http://127.0.0.1:7336/02-data_frames_2.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1

Dataframes 2: ScatterplotDataframes 2: Scatterplot

Dataframes 2: Correlation MatrixDataframes 2: Correlation Matrix

Python Arrays

Basic Statistics, in particular the correlation coefficient

Pandas dataframes: import and handling

The following cell contains functions that need to be imported, please execute it before continuing with the Introduction.

PREREQUISITES

To import data from a csv file into a Pandas dataframe

from pandas import read_csv

To import a dataset from scikit-learn

from sklearn import datasets

To create figure environments and plots

from matplotlib.pyplot import subplots, show

Specific numpy functions, description in the main body

from numpy import corrcoef, fill_diagonal, triu_indices, arange

PYTHON

https://www.youtube.com/watch?v=NjvFh7i74pI
https://www.youtube.com/watch?v=Z8eX4ncHjyQ
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

In many online tutorials you can find the following convention when importing functions:

(or similar). In this case, the whole library is imported and any function in that library is then available using
e.g. pd.read_csv(my_file)

We don’t recommend this as the import of the whole library uses a lot of working memory (e.g. on the order of 100 MB for Numpy).

Introduction
In the previous lesson we have obtained some basic data quantifications using describe. Each of these quantities was calculated for
individual columns (where each column contained a different measured variable). However, in data analysis in general, and especially in
machine learning, the main point of analysis is to also try and exploit the presence of information that lies in relationships between
variables, i.e. columns in our data.

Quantities that are based on data from two variables are referred to as bivariate measures. Analysis that makes use of bivariate (and
potentially higher order) quantities is referred to as bivariate or (in general) multivariate data analysis.

When we combine uni- and multivariate analysis we can get an excellent overview of basic properties of a dataset.

NOTE

import numpy as np

import pandas as pd

PYTHON

Using the diabetes dataset (introduced in the previous lesson), let us look at the data from three of its columns: The upper row of
the below figure shows three histograms. A histogram is a summary plot of the recordings of a single variable. The histograms of
columns with indices 3, 4, and 5 have similar means and variances but that is due to prior normalisation. The shapes differ but this
does not tell us anything about a relationship between the measurements.

One thing that we want to know before we start to apply any machine learning is whether or not there is evidence of relationships
between the individual variables in a dataframe. One of the potential relationships is that the variables are ‘similar’. One way to
check for the similarity between variables in a dataset is to create a scatter plot. The bottom row of the figure below contains the
three scatter plots between variables used to create the histograms in the top row.

(Please execute the code to create the figures. We will describe the scatter plot and its features later on.)

EXAMPLE: THE DIABETES DATA SET

Figure Code

diabetes = datasets.load_diabetes()

diabetes_data = diabetes.data

fig, ax = subplots(figsize=(21, 10), ncols=3, nrows=2)

Histograms

ax[0,0].hist(diabetes_data[:,3], bins=20)

ax[0,0].set_ylabel('Count', fontsize=20)

ax[0,1].hist(diabetes_data[:,4], bins=20)

ax[0,1].set_ylabel('Count', fontsize=20)

ax[0,2].hist(diabetes_data[:,5], bins=20)

ax[0,2].set_ylabel('Count', fontsize=20)

Scatter plots

ax[1,0].scatter(diabetes_data[:,3], diabetes_data[:,4]);

ax[1,0].set_xlabel('Column 3', fontsize=20)

ax[1,0].set_ylabel('Column 4', fontsize=20)

ax[1,1].scatter(diabetes_data[:,4], diabetes_data[:,5]);

ax[1,1].set_xlabel('Column 4', fontsize=20)

ax[1,1].set_ylabel('Column 5', fontsize=20)

ax[1,2].scatter(diabetes_data[:,5], diabetes_data[:,3]);

ax[1,2].set_xlabel('Column 5', fontsize=20)

ax[1,2].set_ylabel('Column 3', fontsize=20);

show()

PYTHON

https://en.wikipedia.org/wiki/Scatter_plot

When plotting the data against each other in pairs (lower row), data column 3 versus column 4 (left) and column 5 versus 3 (right)
both show a fairly uniform circular distribution of points. This is what would be expected if the data in the two columns were
independent of each other.

In contrast, column 4 versus 5 (centre) shows an elliptic, pointed shape along the main diagonal. This shows that something
particular goes on between these data sets. Specifically, it indicates that the two variables recorded in these columns (indices 4
and 5) are not independent of each other. They are more similar than would be expected for independent variables.

In this lesson we aim to get an overview of the similarities in a data set. We first introduce bivariate visualisation using Matplotlib.
Then we use Numpy functions to calculate correlation coefficients and the correlation matrix as an introduction to multivariate
analysis. Combined with the basic statistics obtained in the previous lesson we can get a good overview of a high-dimensional
data set before applying machine learning algorithms.

Work Through: Properties of a Data Set

Univariate properties
For recordings of variables that are contained e.g. in the columns of a dataframe, we often assume the independence of samples: the
measurement in one row does not depend on the recording in another row. Therefore all results of the features obtained e.g. under
describe will not depend on the order of the rows. Also, while the numbers obtained from different rows can be similar (or even the same)
by chance, there is no way to predict the values in one row from the values of another row.

When comparing different variables arranged in columns, in contrast, this is not necessarily so. (We assume here that they are consistent,
e.g. all values in a single row obtained from the same subject.) The values in one column can be related to the numbers in another column
and specifically they can show degrees of similarity. If, for instance, we have a number of subjects investigated some of who have an
inflammatory disease and some of who are healthy controls, an inflammatory marker might be increased in the diseased subjects. If several
markers are recorded from each subject (i.e. more than one column in the data frame), the values of several inflammatory markers may be
elevated simultaneously in the diseased subjects. Thus, the profiles of these markers across the whole group will show a certain similarity.

The goal of multivariate data analysis is to find out whether similarities (or, in general, any relationships) between recorded variables exist.

Let us first import a demo data set and check its basic statistics.
For a work through example, let us work with the ‘patients’ data set. We import the data from the .csv file using read_csv from Pandas
into a dataframe. We then check the number of columns and rows using the len function. We also check the data type of each column to
find out which columns can be used for quantitative analysis.

Out of the seven columns, three containing integers, three containing floating point (decimal) numbers, and the last one containing gender
specification as ‘female’ or ‘male’. We note that the sixth column contains a binary classification. Numerical analysis can thus be restricted
to columns with indices 0 to 4.

Please adjust path according to operating system & personal path to file

df = read_csv('data/patients.csv')

df.head()

print('Number of columns: ', len(df.columns))

print('Number of rows: ', len(df))

df.head()

PYTHON

 Age Height Weight Systolic Diastolic Smoker Gender

0 38 71 176.0 124.0 93.0 1 Male

1 43 69 163.0 109.0 77.0 0 Male

2 38 64 131.0 125.0 83.0 0 Female

3 40 67 133.0 117.0 75.0 0 Female

4 49 64 119.0 122.0 80.0 0 Female

Number of columns: 7

Number of rows: 100

 Age Height Weight Systolic Diastolic Smoker Gender

0 38 71 176.0 124.0 93.0 1 Male

1 43 69 163.0 109.0 77.0 0 Male

2 38 64 131.0 125.0 83.0 0 Female

3 40 67 133.0 117.0 75.0 0 Female

4 49 64 119.0 122.0 80.0 0 Female

OUTPUT

print('The columns are of the following data types:')

df.dtypes

PYTHON

The columns are of the following data types:

Age int64

Height int64

Weight float64

Systolic float64

Diastolic float64

Smoker int64

Gender object

dtype: object

OUTPUT

1. Get the basic statistical properties of first five columns from the ‘describe’ function.

2. Create a barchart of the means of each column. To access a row by its name you can use the convention
‘df_describe.loc[’name’]’.

3. Optional: In the bar chart of the means, try to add the standard deviation as an errorbar, using the keyword argument yerr in
the form ‘yerr = df_describe.loc[’std’]’.

Solution

DIY1: UNIVARIATE PROPERTIES OF THE PATIENTS DATA

df = read_csv('data/patients.csv')

df_describe = df.iloc[:, :5].describe()

df_describe.round(2)

PYTHON

 Age Height Weight Systolic Diastolic

count 100.00 100.00 100.00 100.00 100.00

mean 38.28 67.07 154.00 122.78 82.96

std 7.22 2.84 26.57 6.71 6.93

min 25.00 60.00 111.00 109.00 68.00

25% 32.00 65.00 130.75 117.75 77.75

50% 39.00 67.00 142.50 122.00 81.50

75% 44.00 69.25 180.25 127.25 89.00

max 50.00 72.00 202.00 138.00 99.00

OUTPUT

Solution

fig, ax = subplots()

bins = arange(5)

ax.bar(bins, df_describe.loc['min'])

show()

PYTHON

Solution

Visual Search for Similarity: the Scatter Plot
In Matplotlib, the function scatter allows plotting of one variable against the other. This is a common way to visually check for
relationships between individual columns in a dataframe.

fig, ax = subplots()

bins = arange(5)

ax.bar(bins, df_describe.loc['min'], yerr=df_describe.loc['std'])

ax.set_xticks(bins)

ax.set_xticklabels(df.columns[:5], fontsize=12);

show()

PYTHON

Scatter plot

fig, ax = subplots();

ax.scatter(df['Weight'], df['Height']);

ax.set_xlabel('Weight (pounds)', fontsize=16)

ax.set_ylabel('Height (inches)', fontsize=16)

show()

PYTHON

The data points appear to be grouped into two clouds. We will not deal with this qualitative aspect further at present. Grouping will be
discussed as Unsupervised Machine Learning or Clustering later in the Course.

However, from the plot one might also suspect that there is a trend of heavier people being taller. For instance, we note that there are no
points in the lower right corner of the plot (weight >160 pounds and height < 65 inches).

Create a scatter plot of the systolic via the diastolic blood pressure. Do the two variables appear to be independent or related?

Scatter plots are useful for the inspection of select pairs of data. However, they are only qualitative and thus, in general, it is
preferred to have a numerical quantity.

DIY2: SCATTER PLOT FROM THE PATIENTS DATA

Solution

From the plot one might suspect that a larger systolic value is connected with a larger diastolic value. However, the plot in itself is
not conclusive in that respect.

The Correlation Coefficient
Bivariate measures are quantities that are calculated from two variables of data. Bivariate features are the most widely used subset of
multivariate features - all of which require more than one variable in order to be calculated.

The concept behind many bivariate measures is to quantify “similarity” between two data sets. If any similarity is discovered it is assumed
that there is some connection or relationship between the sets. For similar variables, knowledge of one leads to some expectation about the
other.

Here we are going to look at a specific bivariate quantity: the Pearson correlation coefficient .

fig, ax = subplots();

ax.scatter(df['Systolic'], df['Diastolic']);

ax.set_xlabel('Systolic', fontsize=16)

ax.set_ylabel('Diastolic', fontsize=16)

show()

PYTHON

PCC

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

The formula for the Pearson is set up such that two identical data sets yield a of 1. (Technically this is done by normalising all
variances to be equal to 1). This implies that all data points in a scatter plot of a variable against itself are aligned along the main diagonal
(with positive slope).

Two perfectly antisymmetrical data sets (one variable can be obtained by multiplying the other by -1) yield a value -1. This implies that all
data points in a scatter plot are aligned along the negative or anti diagonal (with negative slope). All other situations lie in between. A
value of 0 refers to exactly balanced positive and negative contributions to the measure. (Note that strictly speaking, the latter does not
necessarily mean that there is no relationship between the variables).

The is an undirected measure in the sense that its value for the comparison between data set 1 and data set 2 is the same as the
 between data set 2 and data set 1.

A direct way to calculate the of two data-sets is to use the function corr applied to a dataframe. For instance, we can apply it to the
Everleys data:

The result as a matrix of two-by-two numbers. Along the diagonal (top left and bottom right) are the values for the comparison of a column
to itself. As any dataset is identical with itself, the values are one by definition.

The non-diagonal elements show that the for the two data sets. Both and are given in the matrix but
because of the symmetry we would only need to report one of the two.

Note that in this lesson we introduce how to calculate the but do not discuss its significance. E.g. the interpretation of the
value above needs to be checked against the fact that we only have 18 data points. Specifically, we refrain from concluding that
because the is negative, a high value of the calcium concentration is associated with a small value of the sodium
concentration (relative to their respective means).

One quantitative way to assess whether or not a given value of the is meaningful or not is to use surrogate data. In our case,
we could e.g. create random numbers in an array with shape (18, 2) such that the two means and standard deviations are the
same as in the Everley data but the two columns are independent of each other. Creating many realisations, we can check what
distribution of values is expected from the randomly generated data and compare this with the values from the Everleys
data.

A lot of what we are going to do in the machine learning sessions will involve Numpy arrays. Let us therefore convert the Everleys data from
a Pandas dataframe into a Numpy array.

PCC PCC

PCC

PCC

PCC

df_everley = read_csv('data/everleys_data.csv')

df_everley.corr()

PYTHON

 calcium sodium

calcium 1.000000 -0.258001

sodium -0.258001 1.000000

OUTPUT

CC ≈ −0.26 CC(12) CC(21)

NOTE

PCC

PCC

PCC

PCC

everley_numpy = df_everley.to_numpy()

everley_numpy

PYTHON

We can see that the numbers remain the same but the format changed. E.g. we have lost the names of the columns. Similar to the Pandas
dataframe, we can use ‘shape’ to see the dimensions of the data array.

We can now use the Numpy function corrcoef to calculate the Pearson correlation:

The function corrcoef takes a two-dimensional array as input. The keyword argument rowvar is True by default which means the
correlation will be calculated along the rows. As we have the data features in the columns, it needs to be set to False. (You can check what
happens if you set it to ‘True’. Instead of a 2x2 matrix for two columns you will get a 18x18 matrix for eighteen pair comparisons.)

We mentioned that the values of the are calculated such that they must lie between -1 and 1. This is achieved by normalisation with
the variance. If for some reason we don’t want the similarity calculated using this normalisation, what we get is the so-called covariance. In
contrast to the its values will depend on the absolute size of the numbers in the data array. From Numpy, we can use the function cov
to calculate the covariance:

array([[3.4555817 , 112.69098],

 [3.6690263 , 125.66333],

 [2.7899104 , 105.82181],

 [2.9399 , 98.172772],

 [5.42606 , 97.931489],

 [0.71581063, 120.85833],

 [5.6523902 , 112.8715],

 [3.5713201 , 112.64736],

 [4.3000669 , 132.03172],

 [1.3694191 , 118.49901],

 [2.550962 , 117.37373],

 [2.8941294 , 134.05239],

 [3.6649873 , 105.34641],

 [1.3627792 , 123.35949],

 [3.7187978 , 125.02106],

 [1.8658681 , 112.07542],

 [3.2728091 , 117.58804],

 [3.9175915 , 101.00987]])

OUTPUT

everley_numpy.shape

PYTHON

(18, 2)

OUTPUT

from numpy import corrcoef

corr_matrix = corrcoef(everley_numpy, rowvar=False)

print(corr_matrix)

PYTHON

[[1. -0.25800058]

 [-0.25800058 1.]]

OUTPUT

PCC

PCC

The result shows how the covariance is strongly dependent on the actual numerical values in a data column. The two values along the
diagonal are identical with the variances obtained by squaring the standard deviation (calculated for example using the describe
function).

Calculate the Pearson between the systolic and the diastolic blood pressure from the patients data using

i. the Pandas dataframe and

ii. the data as Numpy array.

Solution

from numpy import cov

cov_matrix = cov(everley_numpy, rowvar=False)

print(cov_matrix)

PYTHON

[[1.70733842 -3.62631625]

 [-3.62631625 115.70986192]]

OUTPUT

DIY3: CORRELATIONS FROM THE PATIENTS DATA

PCC

df = read_csv('data/patients.csv')

df[['Systolic', 'Diastolic']].corr()

PYTHON

 Systolic Diastolic

Systolic 1.000000 0.511843

Diastolic 0.511843 1.000000

OUTPUT

Solution

It is worth noting that it is equally possible to calculate the correlation between rows of a two-dimension array (i.e. rowvar=True)
but the interpretation will differ. Imagine a dataset where for two subjects a large number, call it , of metabolites were
determined quantitatively (a Metabolomics dataset). If that dataset is of shape (2, N) then one can calculate the correlation
between the two rows. This would be done to determine the correlation of the metabolite profiles between the two subjects.

The Correlation Matrix
If we have more than two columns of data, we can obtain a Pearson correlation coefficient for each pair. In general, for N columns, we get

 pairwise values. We omit the correlations of each column with itself, of which there are , which means we are left with
pairs. Because each value appears twice due to symmetry of the calculation, we can ignore half of them and we are left with

 coefficients for columns.

Here is an example for the ‘patients’ data:

If we do the calculation with the Pandas dataframe, the ‘Gender’ is automatically ignored and by default we get coefficients
for the six remaining columns. Note that the values that involves the ‘Smoker’ column are meaningless.

Let us now convert the dataframe to a Numpy array and check its shape:

df_SysDia_numpy = df[['Systolic', 'Diastolic']].to_numpy()

df_SysDia_corr = corrcoef(df_SysDia_numpy, rowvar=False)

print('Correlation coefficient between Systole and Diastole:', round(df_SysDia_corr[0, 1], 2))

PYTHON

Correlation coefficient between Systole and Diastole: 0.51

OUTPUT

N

N 2 N N ∗ (N − 1)

N ∗ (N − 1)/2 N

df = read_csv('data/patients.csv')

df.corr()

PYTHON

ValueError: could not convert string to float: 'Male'

OUTPUT

6 ∗ 5/2 = 15

patients_numpy = df.to_numpy()

patients_numpy.shape

PYTHON

Now we can try to calculate the correlation matrix for the first five columns of this data array. If we do it directly to the array, we get an
AttributeError: ‘float’ object has no attribute ‘shape’.

This is mended by converting the array to floating point before using the corrcoef function. For this we use astype(float):

The result is called the correlation matrix. It contains all the bivariate comparisons possible for the five columns chosen.

In the calculation above we used the to calculate the matrix. In general, any bivariate measure can be used to obtain a matrix of
same shape.

Heat map in Matplotlib
To get an illustration of the correlation pattern in a dataset we can plot the correlation matrix as a heatmap.

Here is some code using Matplotlib to plot a heatmap of the correlation matrix from the patients dataset. We use the function imshow:

(100, 7)

OUTPUT

cols = 5

patients_numpy_float = patients_numpy[:, :cols].astype(float)

patients_corr = corrcoef(patients_numpy_float, rowvar=False)

patients_corr

PYTHON

array([[1. , 0.11600246, 0.09135615, 0.13412699, 0.08059714],

 [0.11600246, 1. , 0.6959697 , 0.21407555, 0.15681869],

 [0.09135615, 0.6959697 , 1. , 0.15578811, 0.22268743],

 [0.13412699, 0.21407555, 0.15578811, 1. , 0.51184337],

 [0.08059714, 0.15681869, 0.22268743, 0.51184337, 1.]])

OUTPUT

PCC

fig, ax = subplots(figsize=(5,5))

im = ax.imshow(patients_corr, cmap='coolwarm');

show()

PYTHON

Note that we have specified the colour map ‘coolwarm’. For a list of Matplotlib colour maps, please refer to the gallery in the documentation.
The names to use in the code are on the left hand side of the colour bar.

Let us add two more features to improve the figure.
First, to have true correlations stand out (rather than the trivial self correlations along the diagonal which are always one) we we can
deliberately set the diagonal equal to zero. To achieve this, we use the Numpy function fill_diagonal.

Second, imshow scales the colours by default to the minimum and maximum value of the array. As such we don’t know what red or blue
means. To see the colour bar, it can be added to the figure environment ‘fig’ using colorbar.

from numpy import fill_diagonal

fill_diagonal(patients_corr, 0)

fig, ax = subplots(figsize=(7,7))

im = ax.imshow(patients_corr, cmap='coolwarm');

fig.colorbar(im, orientation='horizontal', shrink=0.7);

show()

PYTHON

https://matplotlib.org/3.1.1/gallery/color/colormap_reference.html

The result is that the correlation between columns ‘Height’ and ‘Weight’ is the strongest and presumably higher than could be expected if
these two measures were independent. We can confirm this by plotting a scatter plot for these two columns and compare to the scatter
plot for (original) columns 2 (Height) and 5 (Diastolic blood pressure):

Calculate and plot the correlation matrix of the first five columns as above based on the Spearman rank correlation coefficient. It is
based on the ranking of values instead of their numerical values as for the Pearson coefficient. Spearman therefore tests for tests
for monotonic relationships whereas Pearson tests for linear relationships.

To import the function use:

from scipy.stats import spearmanr

You can then apply it in the form:

data_spearman_corr = spearmanr(data).correlation

DIY4: SPEARMAN CORRELATIONS FROM THE PATIENTS DATA

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

Solution

from scipy.stats import spearmanr

patients_numpy = df.to_numpy()

cols = 5

patients_numpy_float = patients_numpy[:, :cols].astype(float)

patients_spearman = spearmanr(patients_numpy_float).correlation

patients_spearman

PYTHON

array([[1. , 0.11636668, 0.09327152, 0.12105741, 0.08703685],

 [0.11636668, 1. , 0.65614849, 0.20036338, 0.14976559],

 [0.09327152, 0.65614849, 1. , 0.12185782, 0.19738765],

 [0.12105741, 0.20036338, 0.12185782, 1. , 0.48666928],

 [0.08703685, 0.14976559, 0.19738765, 0.48666928, 1.]])

OUTPUT

from numpy import fill_diagonal

fill_diagonal(patients_spearman, 0)

fig, ax = subplots(figsize=(7,7))

im = ax.imshow(patients_spearman, cmap='coolwarm');

fig.colorbar(im, orientation='horizontal', shrink=0.7);

show()

PYTHON

Analysis of the Correlation matrix

The Correlation Coefficients
To analyse the correlations in a data set, we are only interested in the unduplicated correlation coefficients. Here is a way
to extract them and assign them to a variable.

We import the function triu_indices. It provides the indices of a matrix with specified size. The size we need is obtained from our
correlation matrix, using len. It is identical to the number of columns for which we calculated the .

We also need to specify that we do not want the diagonal to be included. For this, there is an offset parameter ‘k’ which will collect the
indices excluding the diagonal if it is set to 1. (To include the indices of the diagonal it would have to be 0).

N ∗ (N − 1)/2

CCs

Now we plot these correlation coefficients as a bar chart to see them one next to each other.

from numpy import triu_indices

Get the number of rows of the correlation matrix

no_cols = len(patients_corr)

Get the indices of the 10 correlation coefficients for 5 data columns

corr_coeff_indices = triu_indices(no_cols, k=1)

Get the 10 correlation coefficients

corr_coeffs = patients_corr[corr_coeff_indices]

print(corr_coeffs)

PYTHON

[0.11600246 0.09135615 0.13412699 0.08059714 0.6959697 0.21407555

 0.15681869 0.15578811 0.22268743 0.51184337]

OUTPUT

fig, ax = subplots()

bins = arange(len(corr_coeffs))

ax.bar(bins, corr_coeffs);

show()

PYTHON

If there is a large number of coefficients, we can also display their histogram or a boxplot as a summary statistics.

The Average Correlation per Column
On a higher level, we can calculate the overall or average correlation per data column. We achieve this by averaging over either the rows
or the columns of the correlation matrix. Because our similarity measure is undirected, both ways of summing yield the same result.

However, we need to consider the sign. The correlation coefficients can be positive or negative. As such, adding for instance +1 ans -1
would yield an average of zero even though both indicate perfect correlation and anti-correlation, respectively. We address this by using
the absolute value abs, ignoring the sign.

To average, we use function mean. This function by default averages over all values of the matrix. To obtain the five values by averaging
over the columns, we specify the ‘axis’ keyword argument as 0.

from numpy import abs, mean

Absolute values of correlation matrix

corr_matrix_abs = abs(patients_corr)

Average of the correlation strengths

corr_column_average = mean(corr_matrix_abs, axis=0)

fig, ax = subplots()

bins = arange(corr_column_average.shape[0])

ax.bar(bins, corr_column_average);

print(corr_column_average)

show()

PYTHON

The result is that the average column correlation is on the order of 0.2 for the columns with indices 1 to 4 and less than 0.1 for the column
with index 0, which is the age.

The Average Data Set Correlation
The sum over rows or columns has given us a reduced set of values to look at. We can now take the final step and average over all
correlation coefficients. This will yield the average correlation of the data set. It condenses the full bivariate analysis into a single number
and can be a starting point when comparing e.g. different data sets of the same type.

Application: The Diabetes Data Set

[0.08441655 0.23657328 0.23316028 0.20316681 0.19438933]

OUTPUT

Average of the correlation strengths

corr_matrix_average = mean(corr_matrix_abs)

print('Average correlation strength: ', round(corr_matrix_average, 3))

PYTHON

Average correlation strength: 0.19

OUTPUT

We now return to the data set that started our enquiry into dataframes in the previous lesson. Let us apply the above and do a summary
analysis of its bivariate features.

First we import the data. it is one of the example datasets of scikit-learn, the Python library for Machine Learning. As such it is already
included in the Anaconda package and you can import it directly.

For the bivariate features, let us get the correlation matrix and plot it as a heatmap. We use code introduced above.

from sklearn import datasets

diabetes = datasets.load_diabetes()

data_diabetes = diabetes.data

PYTHON

from numpy import fill_diagonal

data_corr_matrix = corrcoef(data_diabetes, rowvar=False)

fill_diagonal(data_corr_matrix, 0)

fig, ax = subplots(figsize=(8, 8))

im = ax.imshow(data_corr_matrix, cmap='coolwarm');

fig.colorbar(im, orientation='horizontal', shrink=0.5);

show()

PYTHON

There is one strongly correlated pair (column indices 4 and 5) and one strongly anti-correlated pair (column indices 6 and 7).

Now we calculate the correlation coefficients and plot them as a histogram:10 ∗ 9/2 = 45

from numpy import triu_indices

data_corr_coeffs = data_corr_matrix[triu_indices(data_corr_matrix.shape[0], k=1)]

fig, ax = subplots()

ax.hist(data_corr_coeffs, bins=10);

show()

PYTHON

This histogram shows that the data have a distribution that is shifted towards positive correlations. However, only four values are
(absolutely) larger than 0.5 (three positive, one negative).

Next we can get the average (absolute) correlation per column.

data_column_average = mean(abs(data_corr_matrix), axis=0)

fig, ax = subplots()

bins = arange(len(data_column_average))

ax.bar(bins, data_column_average);

ax.set_title('Average Correlation Strength per Column')

ax.set_xticks(arange(len(diabetes.feature_names)))

ax.set_xticklabels(diabetes.feature_names);

show()

PYTHON

In the plot, note how the column names were extracted from the ‘diabetes’ data using diabetes.feature_names.

Finally, we can obtain the average correlation of the whole data set.

Exercises

Average of the correlation strengths

data_corr_matrix_average = mean(abs(data_corr_matrix))

print('Average Correlation Strength: ', round(data_corr_matrix_average, 3))

PYTHON

Average Correlation Strength: 0.29

OUTPUT

Assignment: The Breast Cancer Data

Import the breast cancer data set using read_csv. Based on the code of this lesson, try to do the following:

1. Get the summary (univariate) statistics of columns 2-10 (accessing indices 1:10) using describe

2. Plot the means of each column as a bar chart with standard deviations as error bars. Why are some bars invisible?

3. Extract the values as Numpy array using to_numpy. The shape of the array should be (569, 31).

4. Calculate the correlation matrix using corrcoef from Numpy and plot it as a heatmap. The shape of the matrix should be (31,
31). Use fill_diagonal to set the diagonal elements to 0.

5. Calculate the average column correlation and plot it as a bar chart.

6. Calculate the average correlation strength of the data set.

In case of doubt, try to get help from the respective documentations for Pandas dataframes, Numpy and Matplotlib.

END OF CHAPTER EXERCISES

Solution

Q1

Q2

To import data from a csv file into a Pandas dataframe

from pandas import read_csv

To import a dataset from scikit-learn

from sklearn import datasets

To create figure environments and plots

from matplotlib.pyplot import subplots, show

Specific numpy functions, description in the main body

from numpy import corrcoef, fill_diagonal, triu_indices, arange

from numpy import mean

df_bc = read_csv("data/breast_cancer.csv")

df_bc_describe = df_bc.iloc[:, 1:10].describe()

df_bc_describe.round(2)

PYTHON

 radius_mean texture_mean ... concave points_mean symmetry_mean

count 569.00 569.00 ... 569.00 569.00

mean 14.13 19.29 ... 0.05 0.18

std 3.52 4.30 ... 0.04 0.03

min 6.98 9.71 ... 0.00 0.11

25% 11.70 16.17 ... 0.02 0.16

50% 13.37 18.84 ... 0.03 0.18

75% 15.78 21.80 ... 0.07 0.20

max 28.11 39.28 ... 0.20 0.30

[8 rows x 9 columns]

OUTPUT

fig, ax = subplots()

bins = arange(df_bc_describe.shape[1])

ax.bar(bins, df_bc_describe.loc['mean'], yerr=df_bc_describe.loc['std'])

show()

PYTHON

Q3

Q4

bc_numpy = df_bc.to_numpy()

bc_numpy.shape

PYTHON

(569, 31)

OUTPUT

bc_corr = corrcoef(bc_numpy, rowvar=False)

bc_corr.shape

PYTHON

(31, 31)

OUTPUT

Q5

Q6

from numpy import fill_diagonal

fill_diagonal(bc_corr, 0)

fig, ax = subplots(figsize=(7,7))

im = ax.imshow(bc_corr, cmap='coolwarm');

fig.colorbar(im, orientation='horizontal', shrink=0.7);

show()

PYTHON

bc_column_average = mean(abs(bc_corr), axis=0)

fig, ax = subplots()

bins = arange(len(bc_column_average))

ax.bar(bins, bc_column_average);

ax.set_title('Average Correlation Strength per Column');

show()

PYTHON

Quantities based on data from two variables are referred as bivariate measures.

Bivariate properties can be studied using matplotlib and numpy.

Multivariate data analysis helps to find out relationships between recorded variables.

Functions corr and corrcoef are used to calculate the .

A correlation matrix is visualised as a heatmap.

Content from Image Handling

Average of the correlation strengths

bc_corr_matrix_average = mean(abs(bc_corr))

print('Average Correlation Strength: ', round(bc_corr_matrix_average, 3))

PYTHON

Average Correlation Strength: 0.387

OUTPUT

KEY POINTS

PCC

http://127.0.0.1:7336/03-image_handling.html

Last updated on 2024-05-24 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

Images: Gray ImageImages: Gray Image

OVERVIEW

Questions

How to read and process images in Python?

How is an image mask created?

What are colour channels in images?

How to deal with big images?

Objectives

Understanding 2-dimensional greyscale images.

Learning image masking.

2-dimensional colour images, colour channels

Decreasing memory load

https://github.com/carpentries/workbench-template-rmd/edit/main/episodes/03-image_handling.Rmd
https://github.com/carpentries/workbench-template-rmd/edit/main/episodes/03-image_handling.Rmd
http://127.0.0.1:7336/03-image_handling.pdf
http://127.0.0.1:7336/03-image_handling.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1
https://www.youtube.com/watch?v=Wn2GCHu-Glw

Images: Colour ImageImages: Colour Image

Images: MaskingImages: Masking

Numpy arrays

Plots and subplots with matplotlib

This lesson has no explicit exercises. At each step, use images of your own choice to practice. There are many image file formats,
different colour schemes etc for which you can try to find similar or analogous solutions.

Challenge

PREREQUISITES

EXERCISES

https://www.youtube.com/watch?v=JVx2szMOZc8
https://www.youtube.com/watch?v=xJsCInqgLz4

Reading and Processing Images
In biology, we often deal with images, for example from microscopy and different medical imaging modalities. In many cases, we wish to
extract some quantitative information from these images. The focus of this lesson is to read and process images in Python. This includes:

Working with 2-dimensional greyscale images
Creating and applying binary image masks
Working with 2-dimensional colour images, and interpreting colour channels
Decreasing the memory for further processing by reducing resolution or patching
Working with 3-dimensional images

Image Example
The example in Figure 1 is an image from the cell image library with the following description:

“Midsaggital section of rat cerebellum, captured using confocal imaging. Section shows inositol
trisphosphate receptor (IP3R) labelled in green, DNA in blue, and synaptophysin in magenta. Honorable
Mention, 2010 Olympus BioScapes Digital Imaging Competition®.”

We might want to, for example, determine the relative amounts of IP3R, DNA and synaptophysin in this image. This tutorial will guide you
through some of the steps to get you started with processing images of all sorts using Python. At the end, you will have the opportunity to
come back to this image example and perform some analysis of your own.

Figure 1: Example image, rat cerebellum

Figure 1: Example image, rat cerebellum

Work Through Example

Reading and Plotting a 2-dimensional Image
First, we want to read in an image. For this part of the lesson, we use a histological slice through an axon bundle as an example. We use
Matplotlib’s image module, from which we import imread to store the image in a variable called img. The function imread can interpret
many different image formats, including jpg, png and tif images.

We can check what type of variable this is:

from matplotlib.image import imread

img = imread('fig/axon_slice.jpg')

PYTHON

PIL.UnidentifiedImageError: cannot identify image file 'fig/axon_slice.jpg'

OUTPUT

print(type(img))

PYTHON

http://cellimagelibrary.org/home

This tells us that the image is stored in a Numpy array. We can check some other properties of this array, for example, what the image
dimensions are.

This tells us that our image is composed of 2300 by 3040 data units, or pixels as we are dealing with an image. It is equivalent to the
image resolution. The array has two dimensions, and so we can expect our image to be two-dimensional as well. Let us now use
matplotlib.pyplot’s imshow function to plot the image to see what it looks like. We set the colour map to gray to overwrite the default colour
map.

NameError: name 'img' is not defined

OUTPUT

print(img.shape)

PYTHON

NameError: name 'img' is not defined

OUTPUT

from matplotlib.pyplot import subplots, show

fig, ax = subplots(figsize=(25, 15))

ax.imshow(img, cmap='gray');

PYTHON

show()

PYTHON

imshow has allowed us to plot the Numpy array of our image data as a picture. The figure is divided up into a number of pixels, and each of
those pixels is assigned an intensity value stored in the Numpy array. Let’s have a closer look by selecting a smaller region of our image
and plotting that.

from matplotlib.pyplot import subplots, show

fig, ax = subplots(figsize=(25, 15))

ax.imshow(img[:50, :70], cmap='gray');

PYTHON

NameError: name 'img' is not defined

OUTPUT

show()

PYTHON

With img[:50, :70] we select the first 50 values from the first dimension, and the first 70 values from the second dimension. Thus, the
image above shows a very small part of the upper left corner of our original image. As we are now zoomed in quite close to that corner, we
can easily see the individual pixels here. Let’s take a quick look at an even smaller section.

fig, ax = subplots(figsize=(25, 15))

ax.imshow(img[:20, :15], cmap='gray');

PYTHON

NameError: name 'img' is not defined

OUTPUT

show()

PYTHON

This is a small section from that same upper left corner. Each square is a pixel and it has one grey value. So how exactly are the pixel
values assigned? By the numbers stored in the Numpy array, img. Let us have a look at those values by picking a slice from the array.

Each of these numbers corresponds to an intensity in the specified colourmap. These numbers range from 0 to 255, implying 256 shades of
grey.

We chose cmap = gray, which assigns darker grey colours to smaller numbers, and lighter grey colours to higher numbers. However, we
can also pick a colourmap to plot our image, and we can even show a colourbar to keep track of the intensity values. Matplotlib has a large
number of very nice colourmaps that you can look through here. We show an example of the colourmaps called viridis and magma:

print(img[:20, :15])

PYTHON

NameError: name 'img' is not defined

OUTPUT

fig, ax = subplots(nrows=1, ncols=2, figsize=(25, 15))

p1 = ax[0].imshow(img[:20, :15], cmap='viridis')

PYTHON

p2 = ax[1].imshow(img[:20, :15], cmap='magma')

PYTHON

https://matplotlib.org/tutorials/colors/colormaps.html

Note, that even though we can plot our greyscale image with colourful colourschemes, it still does not qualify as a colour image. This is
because colour images will require three sets of intensities for each pixel, not just one as in this example. In the case above, the number in
the array represented a grey value and the colour was assigned to that grey value by Matplotlib. These represent ‘false’ colours.

Creating an Image Mask
Now that we know that the images are composed of a set of intensities that are just numbers in a Numpy array, we can start using these
numbers to process our image.

As a first approach, we can plot a histogram of the original image intensities. We use the .flatten() method to turn the original 2300 x
3040 array into a one-dimensional array with 6,992,000 values. This rearrangement allows the inclusion of an image as a single column in
a matrix or dataframe!

The histogram plot shows how many of each of the intensities are found in this image:

fig.colorbar(p1, ax=ax[0], shrink = 0.8)

PYTHON

fig.colorbar(p2, ax=ax[1], shrink = 0.8);

PYTHON

show()

PYTHON

The histogram is a distribution with intensity values mostly between about 50 and 250.
The image shows a cut through an axon bundle. Say we are now interested in the myelin sheath surrounding the axons (the dark rings). We
can create a mask that isolates pixels whose intensity value is below a certain threshold (because darker pixels have lower intensity
values). Everything below this threshold can be assigned to e.g. 1 (representing True), and everything above will be assigned to 0
(representing False). This is called a binary or Boolean mask.

Based on the histogram above, we might try to adjust that threshold somewhere between 100 and 200. Let’s see what we get with a
threshold set to 125. We first use a conditional statement to create the mask. Then we apply the mask to the image. As a result we plot
both the mask and the masked image.

fig, ax = subplots(figsize=(10, 4))

ax.hist(img.flatten(), bins = 50)

PYTHON

ax.set_xlabel("Pixel intensity", fontsize=16);

show()

PYTHON

threshold = 125

mask = img < threshold

PYTHON

img_masked = img*mask

PYTHON

The left subplot shows the binary mask itself. White represents values where our condition is true, and black where our condition is false.
The right image shows the original image after we have applied the binary mask, i.e. the original pixel intensities in regions where the mask
value is true.

Note that “applying the mask” means that the intensities where the condition is true are left unchanged and the intensities where the
condition is false are multiplied with zero ans therefore set to zero.

Let’s have a look at the resulting image histograms.

fig, ax = subplots(nrows=1, ncols=2, figsize=(20, 10))

ax[0].imshow(mask, cmap='gray')

PYTHON

ax[0].set_title('Binary mask', fontsize=16)

ax[1].imshow(img_masked, cmap='gray')

PYTHON

ax[1].set_title('Masked image', fontsize=16)

show()

PYTHON

fig, ax = subplots(nrows=1, ncols=2, figsize=(20, 5))

ax[0].hist(img_masked.flatten(), bins=50)

PYTHON

On the left we show all the values for the masked image. There is a large peak at zero, as a large part of the image is masked. On the right,
we show only the non-zero pixel intensities. We can see that our mask worked as expected, only values up to 125 are found. This is
because our threshold causes a sharp cut-off at a pixel intensity of 125.

Colour Images
Often we want to work with colour images. So far, our image had a single intensity value for each pixel. In colour images, we will have three
so-called channels corresponding to red, green and blue intensities. Any colour will be a composite of the intensity value for each of these
colours. We now show an example with a colour image of the rat cerebellar cortex. Let us import it and check its shape.

Our image array now contains three dimensions. The first two are the spatial dimensions corresponding to the pixel positions. The last one
contains the three colour channels. So we have three layers of intensity values on top of each other.

First, let us plot the whole image.

ax[0].set_title('Histogram of masked image', fontsize=16)

ax[0].set_xlabel("Pixel intensity", fontsize=16)

ax[1].hist(img_masked[img_masked != 0].flatten(), bins=25)

PYTHON

ax[1].set_title('Histogram of masked image after zeros are removed', fontsize=16)

ax[1].set_xlabel("Pixel intensity", fontsize=16)

show()

PYTHON

img_col = imread('fig/rat_brain_low_res.jpg')

PYTHON

PIL.UnidentifiedImageError: cannot identify image file 'fig/rat_brain_low_res.jpg'

OUTPUT

img_col.shape

PYTHON

NameError: name 'img_col' is not defined

OUTPUT

The sample is labeled for Hoechst stain (blue), the Inositol trisphosphate (IP3) receptor (green) and Glial fibrillary acidic protein (GFAP) (red).
Now we can visualise the three colour channels individually by slicing the Numpy array. The stack with index 0 corresponds to ‘red’, index 1
corresponds to ‘green’ and index 2 corresponds to ‘blue’:

fig, ax = subplots(figsize=(25, 15))

ax.imshow(img_col);

PYTHON

NameError: name 'img_col' is not defined

OUTPUT

show()

PYTHON

red_channel = img_col[:, :, 0]

PYTHON

NameError: name 'img_col' is not defined

OUTPUT

green_channel = img_col[:, :, 1]

PYTHON

NameError: name 'img_col' is not defined

OUTPUT

blue_channel = img_col[:, :, 2]

PYTHON

NameError: name 'img_col' is not defined

OUTPUT

fig, ax = subplots(nrows=1, ncols=3, figsize=(20, 10))

imgplot_red = ax[0].imshow(red_channel, cmap="Reds")

PYTHON

imgplot_green = ax[1].imshow(green_channel, cmap="Greens")

PYTHON

imgplot_blue = ax[2].imshow(blue_channel, cmap="Blues")

PYTHON

fig.colorbar(imgplot_red, ax=ax[0], shrink=0.4)

PYTHON

fig.colorbar(imgplot_green, ax=ax[1], shrink=0.4)

PYTHON

fig.colorbar(imgplot_blue, ax=ax[2], shrink=0.4);

PYTHON

This shows what colour combinations each of the pixels is made up of. Notice that the intensities go up to 255. This is because RGB (red,
green and blue) colours are defined within the range 0-255. This gives a total of 16,777,216 possible colour combinations!

We can plot histograms of each of the colour channels.

show()

PYTHON

fig, ax = subplots(nrows=1, ncols=3, figsize=(20, 5))

ax[0].hist(red_channel.flatten(), bins=50)

PYTHON

ax[0].set_xlabel("Pixel intensity", fontsize=16)

ax[0].set_xlabel("Red channel")

ax[1].hist(green_channel.flatten(), bins=50)

PYTHON

ax[1].set_xlabel("Pixel intensity", fontsize=16)

ax[1].set_xlabel("Green channel")

ax[2].hist(blue_channel.flatten(), bins=50)

PYTHON

Dealing with Large Images
Sometimes (or quite often, depending on the field of research), we have to deal with very large images that are composed of many pixels. It
can be quite difficult to process these images, as they can require a lot of computer memory when they are processed. We will look at two
different strategies for dealing with this problem: decreasing resolution and using patches from the original image. We will use the full-
resolution version of the rat brain in the above example.

In fact, we can even get an warning from python that say something like “Image size (324649360 pixels) exceeds limit of 244158474
pixels, could be decompression bomb DOS attack.” This refers to malicious files which are designed to crash or cause disruption by using up
a lot of memory.

We can get around this by changing the maximum pixel limit as follows.

To do this, we import Image from the Python Image Library PIL:

Let’s try again. Be patient, it might take a moment.

ax[2].set_xlabel("Pixel intensity", fontsize=16)

ax[2].set_xlabel("Blue channel")

show()

PYTHON

img_hr = imread('fig/rat_brain.jpg')

img_hr.shape

PYTHON

PIL.UnidentifiedImageError: cannot identify image file 'fig/rat_brain.jpg'

NameError: name 'img_hr' is not defined

OUTPUT

from PIL import Image

Image.MAX_IMAGE_PIXELS = 1000000000

PYTHON

img_hr = imread('fig/rat_brain.jpg')

PYTHON

Now we can plot the full high-resolution image:

PIL.UnidentifiedImageError: cannot identify image file 'fig/rat_brain.jpg'

OUTPUT

img_hr.shape

PYTHON

NameError: name 'img_hr' is not defined

OUTPUT

fig, ax = subplots(figsize=(25, 15))

ax.imshow(img_hr, cmap='gray');

PYTHON

NameError: name 'img_hr' is not defined

OUTPUT

show()

PYTHON

Although now we can plot this image, it consists of over 300 million pixels, and we could run into memory problems when trying to process
it. One approach is simply to reduce the resolution. One way to do this is to import the image using Image from the PIL library that we
imported above. This library gives us more tools to process images, including decreasing the resolution. It is a rich library with lots of useful
tools. As always, having a look at the documentation and playing around is recommended!

We use resize to downsample the image:

Plotting should now be quicker.

img_pil = Image.open('fig/rat_brain.jpg')

img_small = img_pil.resize((174, 187))

print(type(img_small))

PYTHON

PIL.UnidentifiedImageError: cannot identify image file 'fig/rat_brain.jpg'

NameError: name 'img_pil' is not defined

NameError: name 'img_small' is not defined

OUTPUT

fig, ax = subplots(figsize=(25, 15))

ax.imshow(img_small, cmap='gray');

PYTHON

https://pillow.readthedocs.io/en/stable/

With this code, we have resized the image to 174 by 187 pixels. We should be aware though, that our image is no longer in a Numpy array
form but rather it now has type ‘PIL.Image.Image’. We can, however, easily convert it back into a Numpy array using array, if we wish.

NameError: name 'img_small' is not defined

OUTPUT

show()

PYTHON

from numpy import array

img_numpy = array(img_small)

PYTHON

NameError: name 'img_small' is not defined

OUTPUT

print(type(img_numpy))

PYTHON

Often, we like to have full resolution images, as resizing causes a loss of information. An alternative approach to downsampling that is
commonly used is to patch the images, i.e. divide the picture up into smaller chunks, or patches.

For this, we can use functionality from the Scikit-Learn library.

‘extract_patches_2d’ is used to extract parts of the image. The shape of each patch as well as maxiaml number of patches can be
specified.

Note that patching itself can be a memory-intensive task. Extracting lots and lots of patches might take a long time. To look at the patches
we can use a for loop:

NameError: name 'img_numpy' is not defined

OUTPUT

from sklearn.feature_extraction.image import extract_patches_2d

PYTHON

patches = extract_patches_2d(img_hr, (174, 187), max_patches=100)

PYTHON

NameError: name 'img_hr' is not defined

OUTPUT

patches.shape

PYTHON

NameError: name 'patches' is not defined

OUTPUT

fig, ax = subplots(nrows=10, ncols=10, figsize=(25, 25))

ax = ax.flatten()

for index in range(patches.shape[0]):

 ax[index].imshow(patches[index, :, :, :])

PYTHON

NameError: name 'patches' is not defined

OUTPUT

https://scikit-learn.org/stable/

Now, working with these smaller, individual patches will be much more manageable!

3D Images
Sometimes we might want to work with 3D images. A good example for this are MRI scans. These don’t come as ‘csv’ format but in
specialised image formats. One example is nii, the Neuroimaging Informatics Technology Initiative (NIfTI) open file format. For these types
of images we will need special software. In particular, we will be using the open source library called nibabel. Documentation for this
package is available at https://nipy.org/nibabel/.

As it is not contained in your Python installation by default, it needs to be installed first.

To install it, please run:

show()

PYTHON

https://nipy.org/nibabel/

conda install -c conda-forge nibabel

in your command line or terminal if you have an Anaconda distribution of Python.

Alternatively, you can install it using:

pip install nibabel

in your command line or terminal.

The package is now available for use. If a function comes from that package, we call it by referring to the package using nib, followed by a
period and the name of the function:

We can see that this image has three dimensions, and a total of 256 x 256 x 124 volume pixels (or voxels). To visualise our image, we can
plot one slice at a time. Below, we show three different slices, in the transverse direction (from chin to the top of the head. To access an
image from the transverse direction, you pick a single value from the third dimension of the image:

import nibabel as nib

PYTHON

img_3d = nib.load('fig/brain.nii')

img_data = img_3d.get_fdata()

print(type(img_data))

PYTHON

<class 'numpy.memmap'>

OUTPUT

print(img_data.shape)

PYTHON

(256, 256, 124)

OUTPUT

These look fairly dark. We can improve the contrast, by adjusting the intensity range. This requires setting of the keyword arguments vmin
and vmax.

vmin and vmax define the data range that the colormap (in our case the ‘grey’ map) covers. By default, the colormap covers the complete
value range of the supplied data. For an image that will be somewhere between 0 and 255. If we want to brighten up the darker shades of
grey, we can reduce the value of vmax

Expanding the above code:

fig, ax = subplots(ncols=3, figsize=(25, 15))

p1 = ax[0].imshow(img_data[:, :, 60], cmap='gray')

p2 = ax[1].imshow(img_data[:, :, 75], cmap='gray')

p3 = ax[2].imshow(img_data[:, :, 90], cmap='gray')

fig.colorbar(p1, ax=ax[0], shrink=0.4)

PYTHON

fig.colorbar(p2, ax=ax[1], shrink=0.4)

PYTHON

fig.colorbar(p3, ax=ax[2], shrink=0.4);

show()

PYTHON

What about the other dimensions? We can also plot coronal and sagittal slices but note that the respective slices have different pixel
resolution.

fig, ax = subplots(ncols=3, figsize=(25, 15))

p1 = ax[0].imshow(img_data[:, :, 60], cmap='gray', vmin=0, vmax=150)

p2 = ax[1].imshow(img_data[:, :, 75], cmap='gray', vmin=0, vmax=150)

p3 = ax[2].imshow(img_data[:, :, 90], cmap='gray', vmin=0, vmax=150)

fig.colorbar(p1, ax=ax[0], shrink=0.4)

PYTHON

fig.colorbar(p2, ax=ax[1], shrink=0.4)

PYTHON

fig.colorbar(p3, ax=ax[2], shrink=0.4);

show()

PYTHON

Now, we can see all three viewing planes for this 3-dimensional brain scan!

fig, ax = subplots(nrows=3, ncols=5, figsize=(26, 18))

t1 = ax[0, 0].imshow(img_data[:, :, 45].T, cmap='gray', vmin=0, vmax=150, origin='lower')

t2 = ax[0, 1].imshow(img_data[:, :, 60].T, cmap='gray', vmin=0, vmax=150, origin='lower')

t3 = ax[0, 2].imshow(img_data[:, :, 75].T, cmap='gray', vmin=0, vmax=150, origin='lower')

t4 = ax[0, 3].imshow(img_data[:, :, 90].T, cmap='gray', vmin=0, vmax=150, origin='lower')

t5 = ax[0, 4].imshow(img_data[:, :, 105].T, cmap='gray', vmin=0, vmax=150, origin='lower')

c1 = ax[1, 0].imshow(img_data[:, 50, :].T, cmap='gray', vmin=0, vmax=150, origin='lower')

c2 = ax[1, 1].imshow(img_data[:, 75, :].T, cmap='gray', vmin=0, vmax=150, origin='lower')

c3 = ax[1, 2].imshow(img_data[:, 90, :].T, cmap='gray', vmin=0, vmax=150, origin='lower')

c4 = ax[1, 3].imshow(img_data[:, 105, :].T, cmap='gray', vmin=0, vmax=150, origin='lower')

c5 = ax[1, 4].imshow(img_data[:, 120, :].T, cmap='gray', vmin=0, vmax=150, origin='lower')

s1 = ax[2, 0].imshow(img_data[75, :, :].T, cmap='gray', vmin=0, vmax=150, origin='lower')

s2 = ax[2, 1].imshow(img_data[90, :, :].T, cmap='gray', vmin=0, vmax=150, origin='lower')

s3 = ax[2, 2].imshow(img_data[105, :, :].T, cmap='gray', vmin=0, vmax=150, origin='lower')

s4 = ax[2, 3].imshow(img_data[120, :, :].T, cmap='gray', vmin=0, vmax=150, origin='lower')

s5 = ax[2, 4].imshow(img_data[135, :, :].T, cmap='gray', vmin=0, vmax=150, origin='lower');

show()

PYTHON

Exercises

Assignment

Using the image from the beginning of this lesson, “rat_cerebellum.jpg”, do the following tasks:

1. Import the image and display it.

2. Show histograms of each of the colour channels and plot the contributions of each of the RGB colours separately.

3. Create three different binary masks using manually determined thresholds: one for mostly red pixels, one for mostly green
pixels, and one for mostly blue pixels. Note that you can apply conditions that are either greater than or smaller than a
threshold of your choice.

4. Plot the three masks and the corresponding masked images.

5. Using your masks, approximate the relative amounts of synaptophysin, IP3R, and DNA in the image. To do this, you can
assume that the number of red pixels represents synaptophysin, green pixels represents IP3R and blue pixels represent DNA.
The results will vary depending on the setting of the thresholds. How do different threshold values change your results?

6. Change the resolution of your image to different values. How does the resolution affect your results?

END OF CHAPTER EXERCISES

Solution

Q1

Import the image

from matplotlib.image import imread

img_task = imread('fig/rat_cerebellum.jpg')

PYTHON

PIL.UnidentifiedImageError: cannot identify image file 'fig/rat_cerebellum.jpg'

OUTPUT

Display the image

from matplotlib.pyplot import subplots, show

fig, ax = subplots(figsize=(20, 10))

ax.imshow(img_task, cmap='gray');

PYTHON

show()

PYTHON

Q2

red_channel = img_task[:, :, 0]

PYTHON

green_channel = img_task[:, :, 1]

PYTHON

blue_channel = img_task[:, :, 2]

PYTHON

fig, ax = subplots(ncols=3, figsize=(20, 5))

ax[0].hist(red_channel.flatten(), bins=50)

PYTHON

ax[0].set_xlabel("Pixel intensity", fontsize=16)

ax[0].set_xlabel("Red channel")

ax[1].hist(green_channel.flatten(), bins=50)

PYTHON

ax[1].set_xlabel("Pixel intensity", fontsize=16)

ax[1].set_xlabel("Green channel")

ax[2].hist(blue_channel.flatten(), bins=50)

PYTHON

ax[2].set_xlabel("Pixel intensity", fontsize=16)

ax[2].set_xlabel("Blue channel");

show()

PYTHON

fig, ax = subplots(ncols=3, figsize=(20, 10))

imgplot_red = ax[0].imshow(red_channel, cmap="Reds")

PYTHON

imgplot_green = ax[1].imshow(green_channel, cmap="Greens")

PYTHON

imgplot_blue = ax[2].imshow(blue_channel, cmap="Blues")

PYTHON

fig.colorbar(imgplot_red, ax=ax[0], shrink=0.5)

PYTHON

fig.colorbar(imgplot_green, ax=ax[1], shrink=0.5)

PYTHON

fig.colorbar(imgplot_blue, ax=ax[2], shrink=0.5);

PYTHON

show()

PYTHON

Q3-4

red_mask = red_channel > 120

PYTHON

green_mask = green_channel > 100

PYTHON

blue_mask = blue_channel > 100

PYTHON

red_masked = red_channel*red_mask

PYTHON

green_masked = green_channel*green_mask

PYTHON

blue_masked = blue_channel*blue_mask

PYTHON

fig, ax = subplots(nrows=3, ncols=2, figsize=(18, 20))

ax[0, 0].imshow(red_mask, cmap='gray')

PYTHON

ax[0, 0].set_title('Red binary mask', fontsize=16)

ax[0, 1].imshow(red_masked, cmap='Reds')

PYTHON

ax[0, 1].set_title('Masked image', fontsize=16)

ax[1, 0].imshow(green_mask, cmap='gray')

PYTHON

ax[1, 0].set_title('Green binary mask', fontsize=16)

ax[1, 1].imshow(green_masked, cmap='Greens')

PYTHON

ax[1, 1].set_title('Masked image', fontsize=16)

ax[2, 0].imshow(blue_mask, cmap='gray')

PYTHON

ax[2, 0].set_title('Blue binary mask', fontsize=16)

ax[2, 1].imshow(blue_masked, cmap='Blues')

PYTHON

ax[2, 1].set_title('Masked image', fontsize=16);

show()

PYTHON

Q5

from numpy import sum as numpy_sum

total_pixels = img_task.shape[0]*img_task.shape[1]

red_counts = numpy_sum(red_mask)

green_counts = numpy_sum(green_mask)

blue_counts = numpy_sum(blue_mask)

print("Approximately %d"%(red_counts/total_pixels*100)+"% of the image is synaptophysin")

print("Approximately %d"%(green_counts/total_pixels*100)+"% of the image is IP3R")

print("Approximately %d"%(blue_counts/total_pixels*100)+"% of the image is DNA")

PYTHON

Q6

[ad libitum]

imread function can interpret many different image formats.

Masking isolates pixels whose intensity value is below a certain threshold.

The colour images are comprised of three channels (corresponding to red, green and blue intensities).

Python Image Library (PIL) helps to set high pixel limit for larger images.

Content from Time Series

Last updated on 2024-05-24 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

NameError: name 'img_task' is not defined

NameError: name 'red_mask' is not defined

NameError: name 'green_mask' is not defined

NameError: name 'blue_mask' is not defined

NameError: name 'red_counts' is not defined

NameError: name 'green_counts' is not defined

NameError: name 'blue_counts' is not defined

OUTPUT

KEY POINTS

OVERVIEW

Questions

How is timeseries data visualised?

Why do we need to tidy up/filter the data?

How to study correlation among timeseries data points?

Objectives

Learning ways to display multiple time series.

http://127.0.0.1:7336/04-time_series.html
https://github.com/carpentries/workbench-template-rmd/edit/main/episodes/04-time_series.Rmd
https://github.com/carpentries/workbench-template-rmd/edit/main/episodes/04-time_series.Rmd
http://127.0.0.1:7336/04-time_series.pdf
http://127.0.0.1:7336/04-time_series.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1

Time Series: Plot a DataframeTime Series: Plot a Dataframe

Time Series: Function to Plot Time SeriesTime Series: Function to Plot Time Series

Understanding why filtering is needed.

Explaining fourier spectrum of time series.

Knowledge of correlation matrix of time series.

https://www.youtube.com/watch?v=qWYBBXR8Yrs
https://www.youtube.com/watch?v=T2Qh7yjHC9M

Dataframes 1 and 2

Image Handling

Basics of Numpy Arrays

PREREQUISITES

from pandas import read_csv

from numpy import arange, zeros, linspace, sin, pi, c_, mean, var, array

from numpy import correlate, corrcoef, fill_diagonal, amin, amax, asarray

from numpy import around

from numpy.ma import masked_less, masked_greater

from matplotlib.pyplot import subplots, yticks, legend, axis, figure, show

PYTHON

http://127.0.0.1:7336/01-data_frames_1.html
http://127.0.0.1:7336/03-image_handling.html
http://127.0.0.1:7336/aio.html

Please execute the following function definition before proceeding. The function code takes data and creates a plot of all columns
as time series, one above the other. When you execute the function code nothing happens. Similar to the import, running a function
code will only activate it and make it available for later use.

Example: Normal and Pathological EEG

PYTHON FUNCTION

def plot_series(data, sr):

 '''

 Time series plot of multiple time series

 Data are normalised to mean=0 and var=1

 data: nxm numpy array. Rows are time points, columns are recordings

 sr: sampling rate, same time units as period

 '''

 samples = data.shape[0]

 sensors = data.shape[1]

 period = samples // sr

 time = linspace(0, period, period*sr)

 offset = 5 # for mean=0 and var=1 normalised data

 # Calculate means and standard deviations of all columns

 means = data.mean(axis=0)

 stds = data.std(axis=0)

 # Plot each series with an offset

 fig, ax = subplots(figsize=(7, 8))

 ax.plot(time, (data - means)/stds + offset*arange(sensors-1,-1,-1));

 ax.plot(time, zeros((samples, sensors)) + offset*arange(sensors-1,-1,-1),'--',color='gray');

 yticks([]);

 names = [str(x) for x in range(sensors)]

 legend(names)

 ax.set(xlabel='Time')

 axis('tight');

 return fig, ax

PYTHON

As an example, let us import two sets of time series data and convert them to Numpy arrays, here called data_back and data_epil. They
represent human electroencephalogram (EEG) as recorded during normal background activity and during an epileptic seizure called
absence seizure.

The read_csv function is used with the keyword argument delim_whitespace. When set to True, this allows to import data that are
space-separated (rather than comma-separated). If you check the data .txt files, you will see that the numbers (which represent voltages)
are indeed separated by space, not comma.

Next, three constants are assigned: The sampling rate, sr, which is given in number of samples recorded per seconds; the duration of the
recording, period, which is given in seconds; and the number of columns, referred to as channels, to be extracted from the recording. We use
the first 10 columns in this lesson.

The data are then converted from a data frame to Numpy arrays.

To see the names of the channels (or recording sensors) we can use head.

The row indices and column names for the seizure data look the same. The names of the recording channels are from the commonly used
10-20 system to record voltages of brain activity from the scalp in humans. E.g. ‘F’ stands for the frontal lobe.

We can now use the plot function from above to plot the data. Note from the definition (first line) that two input arguments are required: the
data set and the sampling rate.

df_back = read_csv("data/EEG_background.txt", delim_whitespace=True)

df_epil = read_csv("data/EEG_absence.txt", delim_whitespace=True)

sr = 256 # 1 / seconds

period = 6 # seconds

channels = 10

d1 = df_back.to_numpy()

d2 = df_epil.to_numpy()

data_back = d1[:period*sr:, :channels]

data_epil = d2[:period*sr:, :channels]

PYTHON

df_back.head()

PYTHON

 FP1 FP2 F3 F4 ... EO2 EM1 EM2 PHO

0 -7.4546 22.8428 6.28159 15.6212 ... 13.7021 12.9109 13.7034 9.37573

1 -11.1060 21.4828 6.89088 15.0562 ... 13.7942 13.0194 13.7628 9.44731

2 -14.4000 20.0907 7.94856 14.1624 ... 13.8982 13.1116 13.8239 9.51796

3 -17.2380 18.7206 9.36857 13.0093 ... 14.0155 13.1927 13.8914 9.58770

4 -19.5540 17.4084 11.06040 11.6674 ... 14.1399 13.2692 13.9652 9.65654

[5 rows x 28 columns]

OUTPUT

plot_series(data_back, sr)

show()

PYTHON

https://en.wikipedia.org/wiki/10%E2%80%9320_system_(EEG)

plot_series(data_epil, sr);

show()

PYTHON

Observations

1. Background:

There are irregular oscillations of all recorded brain potentials.

Oscillations recorded at different locations above the brain differ.

Oscillations are not stable but modulated over time.

There are different frequency components in each trace.

2. Epileptic Seizure:

There are regular oscillations.

Oscillations recorded at different locations are not identical but similar or at least related in shape.

Despite some modulation, oscillations are fairly stable over time.

There are repetitive motifs composed of two major components throughout the recording, a sharp spike and a slow wave.

Task

Quantify features of these time series data to get an overview. As a univariate feature we can use the frequency content. This takes into
account the fact that the rows (or samplles) are not independent of each other but are organised along the time axis. In consequence, there
are correlations between data points along the rows of each column and the Fourier spectrum can be used to identify these.

The Fourier spectrum assumes that the data are stationary and can be thought of as a superposition of regular sine waves with different
frequencies. Its output will show which of the frequencies are present in the data and also their respective amplitudes.

As a bivariate feature we can use the cross-correlation matrix.

Work Through Example
Check the Numpy array containing the background and seizure data.

There are 1536 rows and 10 columns.

Display data with offset
Take a look at the code of the function plot_series that creates the time series plot. It requires the input of a data file where the row index
is interpreted as time. In addition, the sampling rate sr is required to be able to extract the time scale. The sampling rate specifies the
number of samples recorded per unit time.

The sensors or recording channels are assumed to be in the columns.

print(data_back.shape, data_epil.shape)

PYTHON

(1536, 10) (1536, 10)

OUTPUT

The declaration syntax def is followed by the function name and, in parenthesis, the input arguments. It is completed with a colon.

Following the declaration is the documentation of the function.

Next comes the function code, all indented.

The function closes with the optional output syntax return and any number of returned variables, anything that might be used as a
product of running the function.

In our example, the figure environment and the coordinate system are ‘returned’, and can in principle be used to further modify the plot.

Here is how to call the function and then add a title and the sensor names to the display.

def plot_series(data, sr):

 '''

 Time series plot of multiple time series

 Data are normalised to mean=0 and var=1

 data: nxm numpy array. Rows are time points, columns are channels

 sr: sampling rate, same time units as period

 '''

 samples = data.shape[0]

 sensors = data.shape[1]

 period = samples // sr

 time = linspace(0, period, period*sr)

 offset = 5 # for mean=0 and var=1 normalised data

 # Calculate means and standard deviations of all columns

 means = data.mean(axis=0)

 stds = data.std(axis=0)

 # Plot each series with an offset

 fig, ax = subplots(figsize=(7, 8))

 ax.plot(time, (data - means)/stds + offset*arange(sensors-1,-1,-1));

 ax.plot(time, zeros((samples, sensors)) + offset*arange(sensors-1,-1,-1),'--',color='gray');

 yticks([]);

 names = [str(x) for x in range(sensors)]

 legend(names)

 ax.set(xlabel='Time')

 axis('tight');

 return fig, ax

PYTHON

A function usually (but not necessarily) takes in one or several variables or values, processes them, and produces a specific result. The
variable(s) given to a function and those produced by it are referred to as input arguments, and outputs respectively.

There are different ways to create functions in Python. In this course, we will be using def to implement our own functions. This is the
easiest, and by far the most common method for declaring functions. The structure of a typical function defined using def can be see in the
plot_series example:

There are several points to remember in relation to functions:

The name of a function follows same principles as that of any other variable. It must be in lower-case characters.

The input arguments of a function, e.g. data and sr in the example, are essentially variables whose scope is the function. That is, they
are only accessible within the function itself, and not from outside the function.

Variables defined inside of a function, should not use the same name as variables defined outside. Otherwise they may override each
other.

(fig, ax) = plot_series(data_epil, sr)

names = df_back.columns[:channels]

fig.suptitle('Recording of Absence Seizure', fontsize=16);

legend(names);

show()

PYTHON

It is important for a function to only perform one specific task. As such it can be used independent of the current context. Try to avoid
incorporating separable tasks into a single function.

Once you start creating functions for different purposes you can start to build your own library of ready-to-use functions to address
different needs. This is the primary principle of a popular programming paradigm known as functional programming.

Filtering
Data sets with complex waveforms contain many different components which may or may not be relevant for a specific question.
Data filtering is applied to take out specific components. Component in this context refers to ‘frequency’, i.e. the number of cycles per unit of
time. Thus a small number refers to low frequencies with long periods (cycles) and a large number to high frequencies with short periods.

Let us see a simple example how both low- and high-frequency components can be filtered (suppressed) in the example time series.

Here is a simple function which takes two additional input arguments, the low and the high cut-off.

def data_filter(data, sr, low, high):

 """

 Filtering of multiple time series.

 data: nxm numpy array. Rows are time points, columns are recordings

 sr: sampling rate, same time units as period

 low: Low cut-off frequency (high-pass filter)

 high: High cut-off frequency (low-pass filter)

 return: filtered data

 """

 from scipy.signal import butter, sosfilt

 order = 5

 filter_settings = [low, high, order]

 sos = butter(order, (low,high), btype='bandpass', fs=sr, output='sos')

 data_filtered = zeros((data.shape[0], data.shape[1]))

 for index, column in enumerate(data.transpose()):

 forward = sosfilt(sos, column)

 backwards = sosfilt(sos, forward[-1::-1])

 data_filtered[:, index] = backwards[-1::-1]

 return data_filtered

PYTHON

data_back_filt = data_filter(data_back, sr, 8, 13)

(fig, ax) = plot_series(data_back_filt, sr)

fig.suptitle('Filtered Recording of Background EEG', fontsize=16);

legend(names);

show()

PYTHON

https://en.wikipedia.org/wiki/Functional_programming

The frequency range from 8 to 13 Hz is referred to as alpha band in the electroencephalogram. It is thought that this represents a kind of
idling rhythm of the brain, i.e. an activity where the brain is not actively processing sensory input.

Create figures of the delta (1-4 Hz) band for both the background and the seizure EEG. Note the differences.

DIY1: BAND-PASS FILTERED DATA

Solution

data_back_filt = data_filter(data_back, sr, 1, 4)

(fig, ax) = plot_series(data_back_filt, sr)

fig.suptitle('Delta Band of Background EEG', fontsize=16);

legend(names);

show()

PYTHON

data_epil_filt = data_filter(data_epil, sr, 1, 4)

(fig, ax) = plot_series(data_epil_filt, sr)

fig.suptitle('Delta Band of Seizure EEG', fontsize=16);

legend(names);

show()

PYTHON

Fourier Spectrum
The Fourier spectrum decomposes the time series into a sum of sine waves. The spectrum gives the coefficients of each of the sine wave
components. The coefficients are directly related to the amplitudes needed to optimally fit the sum of all sine waves to recreate the original
data.

However, the assumption behind the Fourier transform is that the data are provided as in infinitely long stationary time series. These
assumptions are not fulfilled as the data are finite and stationarity of a biological system can typically not be guaranteed. Thus,
interpretation needs to be cautious.

Fourier Transform of EEG data
We import the Fourier transform function fft from scipy.fftpack and can use it to transform all columns at the same time.

To plot the results, a couple of steps are required.
First, we obtain a Fourier spectrum for every data column, so we need to define how many plots we want to have. If we take only columns,
we can display them all in one go.

Second, the Fourier transform results in twice the number of complex coefficients (positive and negative) of which we only need the first half.

Third, the Fourier transform outputs complex numbers. To display the ‘amplitude’ of a frequency (the coefficient corresponding to the
amplitude of the sine wave with that frequency) we take the absolute value of the complex numbers.

from scipy.fftpack import fft

data_back_fft = fft(data_back, axis=0)

PYTHON

We can see that in these two channels, the main amplitude contributions lie in the low frequencies, below 2 Hz.

Let us compare the corresponding figure for the case of seizure activity:

no_win = 2

rows = data_back.shape[0]

freqs = (sr/2)*linspace(0, 1, int(rows/2))

amplitudes_back = (2.0 / rows) * abs(data_back_fft[:rows//2, :2])

fig, axes = subplots(figsize=(6, 5), ncols=1, nrows=no_win, sharex=False)

names = df_back.columns[:2]

for index, ax in enumerate(axes.flat):

 axes[index].plot(freqs, amplitudes_back[:, index])

 axes[index].set_xlim(0, 8)

 axes[index].set(ylabel=f'Amplitude {names[index]}')

axes[index].set(xlabel='Frequency (Hz)');

show()

PYTHON

data_epil_fft = fft(data_epil, axis=0)

PYTHON

The main frequency of the epileptic rhythm is between 2 and 3 Hz.
As we can see above in the Fourier spectra above, the amplitudes are high for low frequencies and tend to decrease with increasing
frequency. Sometimes it is useful to see the high frequencies enhanced. This can be achieved with a logarithmic plot of the powers.

fig, axes = subplots(figsize=(6, 5), ncols=1, nrows=no_win, sharex=False)

names = df_epil.columns[:2]

amplitudes_epil = (2.0 / rows) * abs(data_epil_fft[:rows//2, :2])

for index, ax in enumerate(axes.flat):

 axes[index].plot(freqs, amplitudes_epil[:, index])

 axes[index].set_xlim(0, 12)

 axes[index].set(ylabel=f'Amplitude {names[index]}')

axes[index].set(xlabel='Frequency (Hz)');

show()

PYTHON

fig, axes = subplots(figsize=(6, 6), ncols=1, nrows=no_win, sharex=False)

for index, ax in enumerate(axes.flat):

 axes[index].plot(freqs, amplitudes_back[:, index])

 axes[index].set_xlim(0, 30)

 axes[index].set(ylabel=f'Amplitude {names[index]}')

 axes[index].set_yscale('log')

axes[no_win-1].set(xlabel='Frequency (Hz)');

fig.suptitle('Logarithmic Fourier Spectra of Background EEG', fontsize=16);

show()

PYTHON

And for the seizure data:

fig, axes = subplots(figsize=(6, 10), ncols=1, nrows=no_win, sharex=False)

for index, ax in enumerate(axes.flat):

 axes[index].plot(freqs, amplitudes_epil[:, index])

 axes[index].set_xlim(0, 30)

 axes[index].set(ylabel=f'Power {names[index]}')

 axes[index].set_yscale('log')

axes[no_win-1].set(xlabel='Frequency (Hz)');

fig.suptitle('Logarithmic Fourier Spectra of Seizure EEG', fontsize=16);

show()

PYTHON

In the spectrum of the absence data, it is now more obvious that there are further maxima at 6, 9, 12, and perhaps 15Hz. These are integer
multiples or ‘harmonics’ of the basic frequency at around 3Hz, also referred to as the fundamental frequency.

A feature that can be used as a summary statistic, is to caclulate the band power for each channel. The band power can be obtained as the
sum of all powers within a specified range of frequencies, also called the ‘band’. The band power thus represents a single number.

Calculate and display the Fourier spectra of the first two channels filtered between 4 and 12 Hz for the absence seizure data. Can
you find harmonics?

DIY2: FOURIER SPECTRA OF FILTERED DATA

Solution

data_epil_filt = data_filter(data_epil, sr, 4, 12)

data_epil_fft = fft(data_epil_filt, axis=0)

rows = data_epil.shape[0]

freqs = (sr/2)*linspace(0, 1, int(rows/2))

amplitudes_epil = (2.0 / rows) * abs(data_epil_fft[:rows//2, :no_win])

fig, axes = subplots(figsize=(6, 10), ncols=1, nrows=no_win, sharex=False)

for index, ax in enumerate(axes.flat):

 axes[index].plot(freqs, amplitudes_epil[:, index])

 axes[index].set_xlim(0, 12)

 axes[index].set(ylabel=f'Amplitudes {names[index]}')

axes[no_win-1].set(xlabel='Frequency (Hz)');

fig.suptitle('Fourier Spectra of Seizure EEG', fontsize=16);

show()

PYTHON

Cross-Correlation Matrix
As one example of a multivariate analysis of time series data, we can calculate the cross-correlation matrix.

Here it is done for the background:

The diagonal is set to zero. This is done to improve the visual display. If left to one, the diagonal tends to dominate the visual impression
even though it is trivial and nothing can be learned from it.

Looking at the non-diagonal elements, we find:

two strongly correlated series (indices 5 and 7)

two strongly anti-correlated series (indices 3 and 4)

a block of pronounced correlations between series with indices 4 through 9)

corr_matrix_back = corrcoef(data_back, rowvar=False)

fill_diagonal(corr_matrix_back, 0)

fig, ax = subplots(figsize = (8,8))

im = ax.imshow(corr_matrix_back, cmap='coolwarm');

fig.colorbar(im, orientation='horizontal', shrink=0.68);

show()

PYTHON

Calculate the correlation matrix for the seizure data and compare the correlation pattern to the one from the background data.

DIY3: DISPLAY THE CORRELATION MATRIX FOR THE SEIZURE DATA

Solution

We find - a number of pairs of strongly correlated series - two strongly anti-correlated series (in- dices 3 and 4) - a block of
pronounced correlations between series with indices 4 through 9).

So interestingly, while the time series changes dramatically in shape, the correlation pattern still shows some qualitative
resemblance.

All results shown so far, represent the recording of the segment of 6 seconds chosen at the beginning. The human brain produces time-
dependent voltage changes 24 hours a day and as seeing only a few seconds is only a partial view. The next step to investigate is to show
how the features found for one segment vary over time.

corr_matrix_epil = corrcoef(data_epil, rowvar=False)

fill_diagonal(corr_matrix_epil, 0)

fig, ax = subplots(figsize = (8,8))

im = ax.imshow(corr_matrix_epil, cmap='coolwarm');

fig.colorbar(im, orientation='horizontal', shrink=0.68);

show()

PYTHON

Exercises

Pathological Human Brain Rhythms
Look at the image of brain activity from a child at the start of an epileptic seizure. It shows 4 seconds of evolution of the first 10
channels of a seizure rhythm at sampling rate sr=1024.

END OF CHAPTER EXERCISES

path = 'data/P1_Seizure1.csv'

data = read_csv(path, delimiter=r"\s+")

data_P1 = data.to_numpy()

sr = 1024

period = 4

channels = 10

plot_series(data_P1[:sr*period, :channels], sr);

show()

PYTHON

Using the code from this lesson, import the data from the file P1_Seizure1.csv and generate an overview of uni- and multivariate
features in the following form:

1. Pick the first two seconds of the recording as background, the last two second as epileptic seizure rhythm. Use the first ten
channels in both cases. Data should have the shape (2048, 10).

2. Filter the data to get rid of frequencies below 1 Hz and frequencies faster than 20 Hz.

3. Plot time series of both.

4. Fourier transform both filtered data sets and display the Fourier spectra of the first 4 channels. What are the strongest
frequencies in the two sets?

5. Plot the correlation matrices of both data sets. Which channels show the strongest change in correlations?

Solution

Q1
Extract data for first and last two seconds

from pandas import read_csv

from numpy import arange, zeros, linspace, sin, pi, c_, mean, var, array

from numpy import correlate, corrcoef, fill_diagonal, amin, amax, asarray

from numpy import around, triu_indices

from numpy.ma import masked_less, masked_greater

from scipy.fftpack import fft

from matplotlib.pyplot import subplots, yticks, legend, axis, figure, show

PYTHON

sr = 1024

duration = 2 # seconds

data_n = data.to_numpy()

dat_back = data.iloc[:duration*sr, :10]

dat_back = data_n[:duration*sr, :10]

dat_epil = data_n[data_n.shape[0] - duration*sr:, :10]

time = linspace(0, 1, duration*sr)

print(dat_back.shape, dat_epil.shape, time.shape)

PYTHON

(2048, 10) (2048, 10) (2048,)

OUTPUT

Q2 and Q3
Filter and display data

def data_filter(data, sr, low, high):

 """

 Filtering of multiple time series.

 data: nxm numpy array. Rows are time points, columns are recordings

 sr: sampling rate, same time units as period

 low: Low cut-off frequency (high-pass filter)

 high: High cut-off frequency (low-pass filter)

 return: filtered data

 """

 from scipy.signal import butter, sosfilt

 order = 5

 filter_settings = [low, high, order]

 sos = butter(order, (low,high), btype='bandpass', fs=sr, output='sos')

 data_filtered = zeros((data.shape[0], data.shape[1]))

 for index, column in enumerate(data.transpose()):

 forward = sosfilt(sos, column)

 backwards = sosfilt(sos, forward[-1::-1])

 data_filtered[:, index] = backwards[-1::-1]

 return data_filtered

PYTHON

dat_back_filt = data_filter(dat_back, sr, 1, 20)

(fig, ax) = plot_series(dat_back_filt, sr)

fig.suptitle('First two seconds: Background EEG', fontsize=16);

show()

PYTHON

dat_epil_filt = data_filter(dat_epil, sr, 1, 20)

(fig, ax) = plot_series(dat_epil_filt, sr)

fig.suptitle('Last 2 seconds: Seizure EEG', fontsize=16);

show()

PYTHON

Q4
Fourier Transform

You can see the frequencies with largest power visually from a display of the Fourier spectrum. Here is an example code how to
extract those values for each channel using Numpy functions.

rows = dat_back.shape[0]

dat_back_fft = fft(dat_back_filt, axis=0)

powers_back2 = (2.0 / rows) * abs(dat_back_fft[:rows//2, :])

dat_epil_fft = fft(dat_epil_filt, axis=0)

powers_epil2 = (2.0 / rows) * abs(dat_epil_fft[:rows//2, :])

PYTHON

Get the maxima of powers for each channel

powermax_back2 = amax(powers_back2, axis=0)

powermax_epil2 = amax(powers_epil2, axis=0)

Get the frequency index of that maximum

powermax_back2_index = zeros(powers_back2.shape[1])

for ind, pow in enumerate(list(powers_back2.transpose())):

 pow_ind = list(pow).index(powermax_back2[ind])

 powermax_back2_index[ind] = pow_ind

powermax_epil2_index = zeros(powers_epil2.shape[1])

for ind, pow in enumerate(list(powers_epil2.transpose())):

 pow_ind = list(pow).index(powermax_epil2[ind])

 powermax_epil2_index[ind] = pow_ind

powermax_back2_freq = asarray(powermax_back2_index)*(sr / 2 / powers_back2.shape[0])

powermax_epil2_freq = asarray(powermax_epil2_index)*(sr / 2 / powers_epil2.shape[0])

print('Frequencies of max power in background (Hz): ', '\n', around(powermax_back2_freq, decimals=1))

print('')

print('Frequencies of max power in seizure (Hz): ', '\n', around(powermax_epil2_freq, decimals=1))

#print(powermax_back2_freq, '\n', powermax_epil2_freq)

fig, ax = subplots(nrows=2, figsize=(6,9))

binwidth = 1

(counts1, bins1, bars1) = ax[0].hist(powermax_back2_freq, bins=arange(0, 50 + binwidth, binwidth))

ax[0].set_xlim(0, 30)

ax[0].set_ylim(0, 10)

ax[0].set(xlabel='Frequency (Hz), Background')

(counts2, bins2, bars2) = ax[1].hist(powermax_epil2_freq, bins=arange(0, 50 + binwidth, binwidth))

ax[1].set_xlim(0, 30)

ax[1].set_ylim(0, 10)

ax[1].set(xlabel='Frequency (Hz), Seizure');

show()

PYTHON

Frequencies of max power in background (Hz):

 [2.5 11. 4.5 10.5 10.5 1.5 10.5 10.5 10.5 11.]

Frequencies of max power in seizure (Hz):

 [6. 7.5 10. 10. 12. 8. 3.5 7. 7. 8.]

(0.0, 30.0)

(0.0, 10.0)

(0.0, 30.0)

(0.0, 10.0)

OUTPUT

Fourier spectrum with max frequency

print('Maximum count: background: ', amax(counts1))

print('Maximum count: seizure: ', amax(counts2))

print('Frequency with maximum count: background: ', '10-11 Hz')

print('Frequency with maximum count: seizure: ', ' 7- 8 Hz')

PYTHON

Maximum count: background: 5.0

Maximum count: seizure: 3.0

Frequency with maximum count: background: 10-11 Hz

Frequency with maximum count: seizure: 7- 8 Hz

OUTPUT

freqs = (sr/2)*linspace(0, 1, int(rows/2))

fig, axes = subplots(figsize=(6, 14), ncols=1, nrows=4, sharex=False)

axes[0].plot(freqs, powers_back2[:, 3])

axes[0].set_xlim(0, 20)

PYTHON

axes[0].set_ylim(0, 12)

PYTHON

axes[0].set(ylabel=f'Power channel 3')

axes[0].set(xlabel='Frequency (Hz)');

axes[1].plot(time, dat_back_filt[:, 3], c='r')

axes[1].set(xlabel='Time (s)');

axes[1].set_ylim(-50, 60)

PYTHON

axes[2].plot(freqs, powers_epil2[:, 3])

axes[2].set_xlim(0, 20)

PYTHON

axes[2].set_ylim(0, 12)

PYTHON

axes[2].set(ylabel='Power channel index 1')

axes[2].set(xlabel='Frequency (Hz)');

axes[3].plot(time, dat_epil_filt[:, 3], c='r')

axes[3].set(xlabel='Time (s)');

axes[3].set_ylim(-50, 60)

PYTHON

show()

PYTHON

Q5 ### Correlation Matrix

corr_matrix_back2 = corrcoef(dat_back_filt, rowvar=False)

fill_diagonal(corr_matrix_back2, 0)

corr_matrix_epil2 = corrcoef(dat_epil_filt, rowvar=False)

fill_diagonal(corr_matrix_epil2, 0)

fig, ax = subplots(figsize = (8,8), ncols=2)

im1 = ax[0].imshow(corr_matrix_back2, cmap='coolwarm');

fig.colorbar(im1, ax=ax[0], orientation='horizontal', shrink=0.8)

PYTHON

im2 = ax[1].imshow(corr_matrix_epil2, cmap='coolwarm');

fig.colorbar(im2, ax=ax[1], orientation='horizontal', shrink=0.8);

show()

PYTHON

Hist of Correlation Coefficients

channels = dat_back.shape[1]

corr_coeffs_back2 = corr_matrix_back2[triu_indices(channels, k=1)]

corr_coeffs_epil2 = corr_matrix_epil2[triu_indices(channels, k=1)]

fig, ax = subplots(nrows=2)

ax[0].hist(corr_coeffs_back2, bins = 12);

ax[0].set_xlim(-1, 1)

PYTHON

ax[1].hist(corr_coeffs_epil2, bins = 12);

ax[1].set_xlim(-1, 1);

show()

PYTHON

Channel Correlations

corr_coeffs_back2_mean = mean(abs(corr_matrix_back2), axis=0)

corr_coeffs_epil2_mean = mean(abs(corr_matrix_epil2), axis=0)

fig, ax = subplots(nrows=2, figsize=(5,9))

bins = arange(corr_coeffs_back2_mean.shape[0])

ax[0].bar(bins, corr_coeffs_back2_mean);

ax[0].set_xlabel('Background')

ax[0].set_ylim(0, 0.4)

PYTHON

ax[1].bar(bins, corr_coeffs_epil2_mean);

ax[1].set_xlabel('Seizure')

ax[1].set_ylim(0, 0.4);

show()

PYTHON

corr_back2_mean = mean(corr_coeffs_back2_mean)

corr_epil2_mean = mean(corr_coeffs_epil2_mean)

print('Average correlation background: ', around(corr_back2_mean, decimals=2))

print('Average correlation seizure: ', around(corr_epil2_mean, decimals=2))

PYTHON

Average correlation background: 0.23

Average correlation seizure: 0.2

OUTPUT

Channels with strongest correlations during the seizure

A horizontal line can be used to indicate the threshold:

threshold = 0.2

corr_coeffs_epil2_large = corr_coeffs_epil2_mean > threshold

corr_coeffs_epil2_large

PYTHON

array([False, False, False, True, False, True, True, True, False,

 True])

OUTPUT

fig, ax = subplots()

bins = arange(corr_coeffs_back2_mean.shape[0])

ax.bar(bins, corr_coeffs_epil2_mean);

ax.set_xlabel('Seizure')

ax.set_ylim(0, 0.4);

ax.axhline(y=threshold, c='r');

show()

PYTHON

To find the indices of the channels that are larger than the threshold (i.e. those displaying True), we can use Numpy function
nonzero:

plot_series is a Python function created to display multiple timeseries plots.

Data filtering is applied to take out specific and relevant components.

The Fourier spectrum decomposes the time series into a sum of sine waves.

Cross-correlation matrix is used for multivariate analysis.

from numpy import nonzero

nonzero(corr_coeffs_epil2_large)

PYTHON

(array([3, 5, 6, 7, 9]),)

OUTPUT

KEY POINTS

