
Improvement
Last updated on 2024-08-06 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

Data on a 3D TorusData on a 3D Torus

OVERVIEW

Questions

How to deal with complex classification problems?

Why is it important to use different classification algorithms?

What is the best way to find the optimal classifier?

How can we avoid over-fitting of data?

How do we evaluate the performance of classifiers?

Objectives

Understanding complex training and testing data.

Comparison of different model classes.

Explaining the stratified shuffle split.

Evaluation of classification - the ROC and AUC curves.

Machine Learning - Supervised

https://github.com/carpentries/workbench-template-md/edit/main/episodes/02-improvement.Rmd
https://github.com/carpentries/workbench-template-md/edit/main/episodes/02-improvement.Rmd
http://127.0.0.1:4085/02-improvement.pdf
http://127.0.0.1:4085/02-improvement.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1
https://www.youtube.com/watch?v=LH3cUN7WXlg

3D Visualisation3D Visualisation

Compare Multiple ClassifiersCompare Multiple Classifiers

Stratified Shuffle SplitStratified Shuffle Split

https://www.youtube.com/watch?v=GvUvwHmTXUs
https://www.youtube.com/watch?v=xjpQRhtY1l0
https://www.youtube.com/watch?v=nEyt1Ht8GOk

1. From now on the code will become more complex. When copied, the code should run without errors with the given data sets.
(Please report any errors thrown when running the code without modifications).

2. Make a copy of the notebook and start experimenting by modifying part of the code and comparing the outcome. Modifying existing
code is one of the successful strategies when learning to programme as a non-programmer.

3. The first resource to consult when facing bugs are the official documentations, be it Python, Numpy, SciKit Learn or other.

4. If you formulate a problem adequately, often there may be good answers on Stack Overflow.

5. Sometimes, simply copying and pasting an error message into the search engine can point you to the solution.

Import functions

REMARKS

from numpy import mgrid, linspace, c_, arange, mean, array

from numpy.random import uniform, seed

from mpl_toolkits import mplot3d

from matplotlib.pyplot import subplots, axes, scatter, xticks, show

from sklearn.datasets import make_circles

PYTHON

https://stackoverflow.com/

We would like to test several machine learning models’ ability to deal with a complicated task. A complicated task is one where the
topology of the labelled data is not trivially separable into classes by (hyper)planes, e.g. by a straight line in a scatter plot.

Our example is one class of data organised in a doughnut shape and the other class contained within the first doughnut forming a
doughnut-within-a-doughnut.

Here is the function code to create these data, followed by a function call to produce a figure.

CHALLENGE

def make_torus_3D(n_samples=100, shuffle=True, noise=None, random_state=None,

 factor=.8):

 """Make a large torus containing a smaller torus in 3d.

 A toy dataset to visualize clustering and classification

 algorithms.

 Read more in the :ref:`User Guide <sample_generators>`.

 Parameters

 n_samples : int, optional (default=100)

 The total number of points generated. If odd, the inner circle will

 have one point more than the outer circle.

 shuffle : bool, optional (default=True)

 Whether to shuffle the samples.

 noise : double or None (default=None)

 Standard deviation of Gaussian noise added to the data.

 random_state : int, RandomState instance or None (default)

 Determines random number generation for dataset shuffling and noise.

 Pass an int for reproducible output across multiple function calls.

 See :term:`Glossary <random_state>`.

 factor : 0 < double < 1 (default=.8)

 Scale factor between inner and outer circle.

 Returns

 X : array of shape [n_samples, 2]

 The generated samples.

 y : array of shape [n_samples]

 The integer labels (0 or 1) for class membership of each sample.

 """

 from numpy import pi, linspace, cos, sin, append, ones, zeros, hstack, vstack, intp

 from sklearn.utils import check_random_state, shuffle

 if factor >= 1 or factor < 0:

 raise ValueError("'factor' has to be between 0 and 1.")

 n_samples_out = n_samples // 2

 n_samples_in = n_samples - n_samples_out

 co, ao, ci, ai = 3, 1, 3.6, 0.2

 generator = check_random_state(random_state)

 # to not have the first point = last point, we set endpoint=False

 linspace_out = linspace(0, 2 * pi, n_samples_out, endpoint=False)

 linspace_in = linspace(0, 2 * pi, n_samples_in, endpoint=False)

 outer_circ_x = (co+ao*cos(linspace_out)) * cos(linspace_out*61.1)

 outer_circ_y = (co+ao*cos(linspace_out)) * sin(linspace_out*61.1)

 outer_circ_z = ao*sin(linspace_out)

 inner_circ_x = (ci+ai*cos(linspace_in)) * cos(linspace_in*61.1)* factor

 inner_circ_y = (ci+ai*cos(linspace_in)) * sin(linspace_in*61.1) * factor

 inner_circ_z = ai*sin(linspace_in) * factor

PYTHON

 X = vstack([append(outer_circ_x, inner_circ_x),

 append(outer_circ_y, inner_circ_y),

 append(outer_circ_z, inner_circ_z)]).T

 y = hstack([zeros(n_samples_out, dtype=intp),

 ones(n_samples_in, dtype=intp)])

 if shuffle:

 X, y = shuffle(X, y, random_state=generator)

 if noise is not None:

 X += generator.normal(scale=noise, size=X.shape)

 return X, y

RANDOM_STATE = 12345

seed(RANDOM_STATE)

X, y = make_torus_3D(n_samples=2000, factor=.9, noise=.001, random_state=RANDOM_STATE)

feature_1, feature_2, feature_3 = 0, 1, 2

ft_min, ft_max = X.min(), X.max()

fig, ax = subplots(figsize=(12, 9))

ax = axes(projection="3d")

im = ax.scatter3D(X[:, feature_1], X[:, feature_2], X[:, feature_3], marker='o', s=20, c=y, cmap='bwr');

ax.set_xlabel('Feature 1')

ax.set_ylabel('Feature 2')

ax.set_zlabel('Feature 3')

Angles to pick the perspective

ax.view_init(30, 50);

show()

PYTHON

The challenge here is that the only way to separate the data of the two labels from each other is to find a separating border that lies
between the blue and the red doughnut (mathematically: torus) and itself is a torus, i.e. a complex topology. Similarly, one can test to
separate one class of data that lie on the surface of a sphere and then have data on another sphere embedded within it. Typically, it is
unknown what type of high-dimensional topologies is present in biological data. As such it is not clear at the outset which classification
strategy will work best. Let us start with a simpler example.

Traing a variety of machine learning models
SciKit Learn provides the means to generate practice datasets with specific qualities. In this section, we will use the make_circles function.
(see the documentations):

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html

Circular Test Data

The function yields only two features. The reason is that with two features we can visualise the complete state space in a two-dimensional
scatter plot. The data of both labels are organised along a ring. There is a certain amount of randomness added to create data distributed
normally around the ring.

The tricky thing about such a data distribution is that in a standard view of the data, the histogram, the clear state space organisation is not
visible. There are e.g. no two distinct mean values of the distributions. Also, while the two features are clearly dependent on each other (as seen
in the scatter plot), it is not possible to regress one with the other by means of fits of the type y = f(x).

We will now use different classes of machine learning models to fit to these labelled data.

RANDOM_STATE = 1234

seed(RANDOM_STATE)

X, y = make_circles(n_samples=500, factor=0.3, noise=.05, random_state=RANDOM_STATE)

feature_1, feature_2 = 0, 1

ft_min, ft_max = X.min(), X.max()

print('Shape of X:', X.shape)

PYTHON

Shape of X: (500, 2)

OUTPUT

fig, ax = subplots(figsize=(10, 5), nrows=1, ncols=2)

ax[0].scatter(X[:, feature_1], X[:, feature_2], c=y, s=4, cmap='bwr');

ax[1].hist(X);

show()

PYTHON

Classification Algorithms
Different classification algorithms approach problems differently. Let us name the algorithms in SciKit Learn.

SciKit Learn provides the following algorithms for classification problems:

Ensemble: Averaging:
Random Forest
Extra Tree
Isolation Forest
Bagging
Voting

Boosting:
Gradient Boosting
AdaBoost

Decision Trees:
Decision Tree
Extra Tree

Nearest Neighbour:
K Nearest Neighbour
Radius Neighbours
Nearest Centroid

Support Vector Machine:
with non-linear kernel:

Radial Basis Function (RBF) Polynomial
Sigmoid

with linear kernel:
Linear kernel

parametrised with non-linear kernel:
Nu-Support Vector Classification

Neural Networks:
Multi-layer Perceptron
Gaussian:

Gaussian Process
Linear Models:

Logistic Regression
Passive Aggressive
Ridge
Linear classifiers with Stochastic Gradient Descent

Baysian:
Bernoulli
Multinomial
Complement

Some of these algorithms require a more in-depth understanding of how they work. To that end, we only review the performance of those that
are easier to implement and adjust.

AdaBoost
The AdaBoost algorithm is special in that it does not work on its own; instead, it complements another ensemble algorithm (e.g. Random Forest)
and boosts its performance by weighing the training data through a boosting algorithm. Note that boosting the performance does not
necessarily translate into a better fit. This is because boosting algorithms are generally robust against over-fitting, meaning that they always try
to produce generalisable models.

Seeding
Most machine learning algorithms rely on random number generation to produce results. Therefore, one simple, but important adjustment is to
seed the number generator, and thereby making our comparisons more consistent; i.e. ensure that all models use the same set of random
numbers. Almost all SciKit Learn models take an argument called random_state, which takes an integer number to seed the random number
generator.

Training and Testing
Here is code to import a number of classifiers from SciKit Learn, fit them to the training data and predict the (complete) state space. The result is
plotted below.

from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, GradientBoostingClassifier, AdaBoo

from sklearn.tree import DecisionTreeClassifier

from sklearn.svm import SVC, LinearSVC

from sklearn.neural_network import MLPClassifier

from sklearn.neighbors import KNeighborsClassifier

classifiers = {

 'Random Forest': RandomForestClassifier(random_state=RANDOM_STATE),

 'AdaBoost (Random Forest)': AdaBoostClassifier(RandomForestClassifier(random_state=RANDOM_STATE)),

 'Extra Trees': ExtraTreesClassifier(random_state=RANDOM_STATE),

 'AdaBoost (Extra Tree)': AdaBoostClassifier(ExtraTreesClassifier(random_state=RANDOM_STATE)),

 'Decision Tree': DecisionTreeClassifier(random_state=RANDOM_STATE),

 'SVC (RBF)': SVC(random_state=RANDOM_STATE),

 'SVC (Linear)': LinearSVC(random_state=RANDOM_STATE),

 'Multi-layer Perceptron': MLPClassifier(max_iter=5000, random_state=RANDOM_STATE)

}

PYTHON

ft_min, ft_max = -1.5, 1.5

Constructing (2 grids x 300 rows x 300 cols):

grid_1, grid_2 = mgrid[ft_min:ft_max:.01, ft_min:ft_max:.01]

We need only the shape for one of the grids (i.e. 300 x 300):

grid_shape = grid_1.shape

state space grid for testing

new_obs = c_[grid_1.ravel(), grid_2.ravel()]

PYTHON

contour_levels = linspace(0, 1, 6)

fig, all_axes = subplots(figsize=[15, 5], ncols=4, nrows=2, sharey=True, sharex=True)

for ax, (name, clf) in zip(all_axes.ravel(), classifiers.items()):

 clf.fit(X, y)

 y_pred = clf.predict(new_obs)

 y_pred_grid = y_pred.reshape(grid_shape)

 ax.scatter(X[:, feature_1], X[:, feature_2], c=y, s=1, cmap='bwr_r')

 ax.contourf(grid_1, grid_2, y_pred_grid, cmap='gray_r', alpha=.2, levels=contour_levels)

 ax.set_ylim(ft_min, ft_max)

 ax.set_xlim(ft_min, ft_max)

 ax.set_yticks([-1.5, 0, 1.5])

 ax.set_xticks([-1.5, 0, 1.5])

 ax.set_title(name, fontsize=10);

show()

PYTHON

Seven of the eight classifiers were able to separate the inner data set from the outer data set successfully. The main difference is that some
algorithms ended up with a more rectangular shape of the boundary whereas the others found a more circular form which reflects the original
data distribution more closely. One classifier simply fails: the support vector classifier (SVC) with linear basis functions: it tries to fit a straight line
to separate the classes which in this case is impossible.

The Train-Test Split
We will now modify our workflow to avoid the need to create separate testing data (the typical situation when dealing with recorded data). For
this we start with a data set of n labelled samples. Of these n samples, a certain percentage is used for training (using the provided labels) and
the rest for testing (withholding the labels). The testing data then do not need to be prepared separately.

The function we use is train_test_split from SciKit Learn. A nice feature of this function is that it tries to preserve the ratio of labels in the
split. E.g. if the data contain 70% of True and 30 % of False labels, the algorithm tries to preserve this ratio in the split as good as possible:
around 70% of the training data and of the testing data will have the True label.

Here is an illustration of the two sets of data. The splitting into testing and training data is done randomly. Picking test data randomly is
particularly important for real data as it helps to reduce potential bias in the recording order.

from sklearn.model_selection import train_test_split

X, y = make_circles(n_samples=1000, factor=0.3, noise=.05, random_state=RANDOM_STATE)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3, random_state=RANDOM_STATE, shuffle=T

print(X_train.shape, X_test.shape)

PYTHON

(700, 2) (300, 2)

OUTPUT

Now we can repeat the training with this split dataset using eight types of models as above.
To compare the model performances, we use scoring: the method .score takes as input arguments the testing samples and their true labels. It
then uses the model predictions to calculate the fraction of labels in the testing data that were predicted correctly.

There are different techniques to evaluate the performance, but the .score method provides a quick, simple, and handy way to assess a model.
As far as classification algorithms in SciKit Learn are concerned, the method usually produces the mean accuracy, which is between 0 and 1;
and the higher the score, the better the fit.

fig, ax = subplots(figsize=(7, 6), ncols=2, nrows=2, sharex=True)

ax[0, 0].scatter(X_train[:, feature_1], X_train[:, feature_2], c=y_train, s=4, cmap='bwr')

ax[0, 1].scatter(X_test[:, feature_1], X_test[:, feature_2], c=y_test, s=4, cmap='bwr')

ax[1, 0].hist(X_train)

ax[1, 1].hist(X_test)

ax[0, 0].set_title('Training data')

ax[0, 1].set_title('Test data')

ax[0, 0].set_ylim(ft_min, ft_max)

ax[0, 1].set_ylim(ft_min, ft_max)

ax[1, 0].set_ylim(0, 100)

ax[1, 1].set_ylim(0, 100);

show()

PYTHON

Here, we only plotted the test data, those that were classified based on the trained model. The gray area shows the result of the classification:
within the gray area the prediction is 1 (the red samples) and outside it is 0 (the blue samples). The result is that testing data are classified
correctly in all but one of the classifiers, so their performance is 1, or 100 %. This is excellent because it demonstrates that most classifiers are
able to deal with embedded topologies.

Let us now repeat the procedure with a higher level of noise to make the task more complicated.

fig, all_axes = subplots(figsize=[15, 5], ncols=4, nrows=2, sharey=True, sharex=True)

for ax, (name, clf) in zip(all_axes.ravel(), classifiers.items()):

 # Training the model using training data:

 clf.fit(X_train, y_train)

 y_pred = clf.predict(new_obs)

 y_pred_grid = y_pred.reshape(grid_shape)

 # Evaluating the score using test data:

 score = clf.score(X_test, y_test)

 # Scattering the test data only:

 ax.scatter(X_test[:, feature_1], X_test[:, feature_2], c=y_test, s=4, cmap='bwr', marker='.')

 ax.contourf(grid_1, grid_2, y_pred_grid, cmap='gray_r', alpha=.2, levels=contour_levels)

ax.contourf(grid[0], grid[1], y_pred_grid, cmap='gray_r', alpha=.2, levels=contour_levels)

 ax.set_ylim(ft_min, ft_max)

 ax.set_xlim(ft_min, ft_max)

 ax.set_yticks([-1.5, 0, 1.5])

 ax.set_xticks([-1.5, 0, 1.5])

 label = '{} - Score: {:.2f}'.format(name, score)

 ax.set_title(label , fontsize=10);

show()

PYTHON

X, y = make_circles(n_samples=1000, factor=.5, noise=.3, random_state=RANDOM_STATE)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3, random_state=RANDOM_STATE, shuffle=T

fig, ax = subplots(figsize=(7, 6), ncols=2, nrows=2, sharex=True)

ax[0, 0].scatter(X_train[:, feature_1], X_train[:, feature_2], c=y_train, s=4, cmap='bwr')

ax[0, 1].scatter(X_test[:, feature_1], X_test[:, feature_2], c=y_test, s=4, cmap='bwr')

ax[1, 0].hist(X_train)

ax[1, 1].hist(X_test)

ax[0, 0].set_title('Training data')

ax[0, 1].set_title('Test data')

ax[0, 0].set_ylim(-3, 3)

ax[0, 1].set_ylim(-3, 3)

ax[1, 0].set_ylim(0, 200)

ax[1, 1].set_ylim(0, 200);

show()

PYTHON

Now the data are mixed in the plane and there is no simple way to separate the two classes. We can see in the plots how the algorithms try to
cope with their different strategies. One thing that is immediately obvious is that the fitting patterns are different. Particularly, we can see the
fragmented outcome of the decision tree classifier and the smooth elliptic area found by the support vector classifier (SVC) with radial basis
functions (RBF) and the neural network (MLP). On a closer look, you may also notice that with ensemble methods in the upper row, the patterns
are somewhat disorganised. This is due to the way ensemble methods work: they sample the data randomly and then class them into different
categories based on their labels.

If the prediction was made by chance (throwing a dice), one would expect a 50 % score. Thus, the example also shows that the performance
depends on the type of problem and that this testing helps to find an optimal classifier.

fig, all_axes = subplots(figsize=[15, 5], ncols=4, nrows=2, sharey=True, sharex=True)

for ax, (name, clf) in zip(all_axes.ravel(), classifiers.items()):

 # Training the model using training data:

 clf.fit(X_train, y_train)

 y_pred = clf.predict(new_obs)

 y_pred_grid = y_pred.reshape(grid_shape)

 # Evaluating the score using test data:

 score = clf.score(X_test, y_test)

 # Scattering the test data only:

 ax.scatter(X_test[:, feature_1], X_test[:, feature_2], c=y_test, s=4, cmap='bwr', marker='.')

 ax.contourf(grid_1, grid_2, y_pred_grid, cmap='gray_r', alpha=.2, levels=contour_levels)

 ax.set_ylim(ft_min, ft_max)

 ax.set_xlim(ft_min, ft_max)

 ax.set_yticks([-1.5, 0, 1.5])

 ax.set_xticks([-1.5, 0, 1.5])

 label = '{} - Score: {:.2f}'.format(name, score)

 ax.set_title(label , fontsize=10);

show()

PYTHON

Testing a model on data that is used in training is a methodological mistake. It is therefore vital that the test data is never, ever used for
training a model at any stage. This is one of the most fundamental principles of machine learning, and its importance cannot be
exaggerated. There are numerous examples of people making this mistake one way or another, especially where multiple classification
algorithms are used to address a problem.

The Stratified Shuffle Split
One potential bias arises when we try to improve the performance of our models through the change of the so-called hyperparameters (instead
of using the default parameters as we did so far). We will always receive the optimal output given the specific test data chosen. This may lead
to overfitting the model on the chosen training and testing data. This can be avoided by choosing different splits into testing and training data
and repeating the fit procedure. Doing different splits while preserving the fraction of labels of each class in the original data, the method is
called the stratified shuffle split.

We first need to import and instantiate the splitter. We set key word argument n_splits to determine the number of different splits.
test_size lets us determine what fraction of samples is used for the testing data.

Let us look at the different splits obtained:

NEVER EXPOSE THE TEST DATA

from sklearn.model_selection import StratifiedShuffleSplit

sss = StratifiedShuffleSplit(random_state=RANDOM_STATE, n_splits=10, test_size=0.3)

PYTHON

By choosing n_splits=10, we obtained ten different splits that have similarly distributed train and test data subsets from the original data. The
fraction of the data set aside for testing is 30 %. The different splits cover the whole data set evenly. As such, using them for training and testing
will lead to a fairly unbiased average performance.

Let us look at the data in state space to check that the classification task is now a real challenge.

fig, ax = subplots(figsize=[10, 5])

n_splits = sss.n_splits

split_data_indices = sss.split(X=X, y=y)

for index, (tr, tt) in enumerate(split_data_indices):

 indices = X[:, feature_1].copy()

 indices[tt] = 1

 indices[tr] = 0

 # Visualize the results

 x_axis = arange(indices.size)

 y_axis = [index + .5] * indices.size

 ax.scatter(x_axis, y_axis, c=indices, marker='_', lw=10, cmap='coolwarm', vmin=-.2, vmax=1.2)

Plot the data classes and groups at the end

class_y = [index + 1.5] * indices.size

ax.scatter(x_axis, class_y, c=y, marker='_', lw=10, cmap='coolwarm')

Formatting

ylabels = list(range(n_splits))

ylabels.extend(['Data'])

ax.set_yticks(arange(n_splits + 1) + .5)

ax.set_yticklabels(ylabels)

ax.set_xlabel('Sample index')

ax.set_ylabel('SSS iteration');

show()

PYTHON

These are the scatter plots of the training (magenta) and testing (blue) data. Here are their distributions:

fig, ax = subplots(figsize=(8, 8))

for train_index, test_index in sss.split(X, y):

 ax.scatter(X[train_index, 0], X[train_index, 1], c=y[train_index], cmap='Set1', s=30, marker='^', alpha=

 ax.scatter(X[test_index, 0], X[test_index, 1], c=y[test_index], cmap='cool', s=30, alpha=.5, marker='*',

show()

PYTHON

fig, ax = subplots(figsize=(8, 8))

for train_index, test_index in sss.split(X, y):

 ax.hist(X[train_index], color=['magenta', 'red'], alpha=.5, histtype='step')

 ax.hist(X[test_index], color=['cyan', 'blue'], alpha=.4, histtype='step');

show()

PYTHON

The distributions differ in height because less data are in the testing test. Otherwise they are similarly centred and spread. Using a number of
realisations (instead of just one) we expect to obtain a more accurate and robust result of the training.

We now train our classifiers on these different splits and obtain the respective scores. They will give a robust measure of the classifier’s
performance given the data and avoid potential bias due to the selection of specific test data.

X, y = make_circles(n_samples=1000, factor=.3, noise=.4, random_state=RANDOM_STATE)

split_data_indices = sss.split(X=X, y=y)

score = list()

for train_index, test_index in sss.split(X, y):

 X_s, y_s = X[train_index, :], y[train_index]

 new_obs_s, y_test_s = X[test_index, :], y[test_index]

 score_clf = list()

 for name, clf in classifiers.items():

 clf.fit(X_s, y_s)

 y_pred = clf.predict(new_obs_s)

 score_clf.append(clf.score(new_obs_s, y_test_s))

 score.append(score_clf)

score_mean = mean(score, axis=0)

bins = arange(len(score_mean))

fig, ax = subplots()

ax.bar(bins, score_mean);

ax.set_xticks(arange(0,8)+0.4)

ax.set_xticklabels(classifiers.keys(), rotation=-70);

show()

print(classifiers.keys())

print('Average scores: ')

print(["{0:0.2f}".format(ind) for ind in score_mean])

PYTHON

▾ MLPClassifier

MLPClassifier(max_iter=5000, random_state=1234)

The result is the average score for the ten splits performed. All results for the noise-contaminated data are now in the seventies.

This is still good given the quality of the data. It appears that the decision tree classifier gives the lowest result for this kind of problem, SVC
(RBF) scores highest. We have to keep in mind, however, that we are using the classifiers with their default settings. We will later use variation
of the so-called hyperparameters to further improve the classification score.

Here we have used a for loop to train and test on each of the different splits of the data. SciKit Learn also contains functions that take the
stratified shuffle split as an argument, e.g. permutation_test_score. In that case, the splits do not need to be done separately.

We have now reached a point where we can trust to have a robust and unbiased outcome of the training. Let us now look at more refined ways
to quantify the result.

Evaluation: ROC and AUC
There are various measures that may be used to evaluate the performance of a machine learning model. Such measures look at different
characteristics, including the goodness of fit and generalisability of a model. Evaluation measures used with regards to classification models
include, but are not limited to:

Receiver Operation Characteristic (ROC) and Area Under the Curve (AUC) - for binary classifiers.
Accuracy
Precision
Recall

dict_keys(['Random Forest', 'AdaBoost (Random Forest)', 'Extra Trees', 'AdaBoost (Extra Tree)', 'Decision Tre

Average scores:

['0.76', '0.76', '0.75', '0.75', '0.70', '0.79', '0.50', '0.78']

OUTPUT

There are many other metrics that, depending on the problem, we may use to evaluate a machine learning model. Please see the official
documentations for additional information on these measures and their implementation in SciKit Learn.

The quantities we are going to look at are the Receiver Operation Characteristic (ROC) and the Area Under the Curve (AUC).

A receiver operation characteristic, often referred to as the ROC curve, is a visualisation of the discrimination threshold in a binary classification
model. It illustrates the rate of true positives (TPR) against the rate of false positives (FPR) at different thresholds. The aforementioned rates are
essentially defined as:

True Positive Rate (TPR): the sensitivity of the model
False Positive Rate (FPR): one minus the specificity of the model

This makes ROC a measure of sensitivity versus specificity.

The area under the ROC curve, often referred to as AUC, reduces the information contained within a ROC curve down to a value between 0 and
1, with 1 being a perfect fit. An AUC value of 0.5 represents any random guess, and values below demonstrate a performance that’s even worse
than a lucky guess!

SciKit Learn includes specialist functions called roc_curve and roc_auc_score to obtain ROC (FPR and TPR values for
visualisation) and AUC respectively. Both functions receive as input arguments the test labels (i.e. y_test) and the score (probability)
associated with each prediction. We obtain the latter measure using one of the following two techniques:

Decision function: where classification models have a .decision_function method that provides us with score associated with
each label.

Probability: where classification models have a .predict_proba method that provides us with the probability associated with each
prediction (we used it in the Classification Introduction lesson). In this case, however, the results are provided in the form of a two-
dimensional array where columns represent different labels (as defined in property). Given that we will plot ROC curves for binary
problems (two labels), we only pick one of these columns. Usually, the second column (the feature representing True or 1) is the one
to choose. However, if you notice that the results are unexpectedly bad, you may try the other column just be sure.

We can see that our classifiers now reach different degrees of prediction. The degree can be quantified by the Area Under the Curve (AUC). It
refers to the area between the blue ROC curve and the orange diagonal. The area under the ROC curve, often referred to as AUC, reduces the
information contained within a ROC curve down to a value between and 0 and 1, with 1 being a perfect fit. An AUC value of 0.5 represents a
random guess, and values below the diagonal demonstrate a performance that’s even worse than a guess!

SciKit Learn includes specialist functions called roc_curve and roc_auc_score to obtain ROC (FPR and TPR values for visualisation) and AUC
respectively. Both function receive as input arguments the test labels (i.e. y_score) and the score (probability) associated with each prediction.
We obtain the latter measure using one of the following two techniques:

Decision function: where classification models have a .decision_function method that provides us with a score associated with each label.
Probability: where classification models have a predict_proba_ method that provides us with the probability associated with each
prediction. In this case, however, the results are provided in the form of a two-dimensional array where columns represents different labels
(as defined in .classes property). Given that we only plot ROC curves for binary problems, we should only use one of these columns.
Usually, the second column (the feature representing True or 1) is the one to choose. However, if you notice that the results are unexpectedly
bad, you may try the other column just be sure.

DISCUSSION

https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html

from sklearn.metrics import roc_curve, roc_auc_score

fig, all_axes = subplots(figsize=[15, 10], ncols=4, nrows=2, sharey=True, sharex=True)

for ax, (name, clf) in zip(all_axes.ravel(), classifiers.items()):

 clf.fit(X_train, y_train)

 # Checking whether or not the object has `decision_function`:

 if hasattr(clf, 'decision_function'):

 # If it does:

 y_score = clf.decision_function(X_test)

 else:

 # Otherwise:

 y_score = clf.predict_proba(X_test)[:, feature_2] # We only need one column.

 # Obtaining the x- and y-axis values for the ROC curve:

 fpr, tpr, thresh = roc_curve(y_test, y_score)

 # Obtaining the AUC value:

 roc_auc = roc_auc_score(y_test, y_score)

 ax.plot(fpr, tpr, lw=2)

 ax.plot([0, 1], [0, 1], lw=1, linestyle='--')

 ax.set_xlabel('False Positive Rate')

 ax.set_ylabel('True Positive Rate')

 label = '{} - AUC: {:.2f}'.format(name, roc_auc)

 ax.set_title(label, fontsize=10)

show()

PYTHON

The (orange) diagonal represents predictions of the two labels by a coin toss. To be of value the classifier must reach a ROC curve above the
diagonal.

This concludes our first steps into classification with SciKit Learn. There are many more aspects of classification. From a practical point of view,
data normalisation and permutation test score as well as the workflow report are important. These will be the topics of our next lesson.

Exercises

https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.permutation_test_score.html

Take the torus-within-a-torus data generator from the Challenge above.

1. Create data with three features and a noise level of 0.3.

2. Create a pseudo-3D scatter plot of one of the test data sets to judge the difficulty of the task.

3. Train the above introduced classifiers using the stratified shuffle split to generate 10 sets of testing and training data and obtain the
average score for each classifier.

4. Plot the feature importances obtained from the Random Forest classifier to see the contributions of each feature to the outcome.

Note that with 3 or more features it is no longer possible to see the full state space in a plane.

5. Optional: Check how the outcome varies depending on

Choice of seed for random number generator

Number of data splits

Percentage of data withheld for testing

Pick any of the provided (or other) data sets with labels to repeat the above. Feel free to try and do any testing or plotting that
you find important. This is not an assignment to get the correct answer. Rather at this stage, we practise to use functionality
from SciKit-learn to search for structure in the data that helps to achieve the best predictions possible.

END OF CHAPTER EXERCISES

RECOMMENDATION

Solution

from numpy import mgrid, linspace, arange, mean, array

from numpy.random import uniform, seed

from matplotlib.ticker import LinearLocator, FormatStrFormatter

from mpl_toolkits import mplot3d

from matplotlib.pyplot import subplots, axes, scatter, xticks, show

PYTHON

def make_torus_3D(n_samples=100, shuffle=True, noise=None, random_state=None,

 factor=.8):

 """Make a large torus containing a smaller torus in 3d.

 A toy dataset to visualize clustering and classification

 algorithms.

 Read more in the :ref:`User Guide <sample_generators>`.

 Parameters

 n_samples : int, optional (default=100)

 The total number of points generated. If odd, the inner circle will

 have one point more than the outer circle.

 shuffle : bool, optional (default=True)

 Whether to shuffle the samples.

 noise : double or None (default=None)

 Standard deviation of Gaussian noise added to the data.

 random_state : int, RandomState instance or None (default)

 Determines random number generation for dataset shuffling and noise.

 Pass an int for reproducible output across multiple function calls.

 See :term:`Glossary <random_state>`.

 factor : 0 < double < 1 (default=.8)

 Scale factor between inner and outer circle.

 Returns

 X : array of shape [n_samples, 2]

 The generated samples.

 y : array of shape [n_samples]

 The integer labels (0 or 1) for class membership of each sample.

 """

 from numpy import pi, linspace, cos, sin, append, ones, zeros, hstack, vstack, intp

 from sklearn.utils import check_random_state, shuffle

 if factor >= 1 or factor < 0:

 raise ValueError("'factor' has to be between 0 and 1.")

 n_samples_out = n_samples // 2

 n_samples_in = n_samples - n_samples_out

 co, ao, ci, ai = 3, 1, 3.6, 0.2

 generator = check_random_state(random_state)

 # to not have the first point = last point, we set endpoint=False

 linspace_out = linspace(0, 2 * pi, n_samples_out, endpoint=False)

 linspace_in = linspace(0, 2 * pi, n_samples_in, endpoint=False)

 outer_circ_x = (co+ao*cos(linspace_out)) * cos(linspace_out*61.1)

 outer_circ_y = (co+ao*cos(linspace_out)) * sin(linspace_out*61.1)

 outer_circ_z = ao*sin(linspace_out)

 inner_circ_x = (ci+ai*cos(linspace_in)) * cos(linspace_in*61.1)* factor

 inner_circ_y = (ci+ai*cos(linspace_in)) * sin(linspace_in*61.1) * factor

 inner_circ_z = ai*sin(linspace_in) * factor

PYTHON

 X = vstack([append(outer_circ_x, inner_circ_x),

 append(outer_circ_y, inner_circ_y),

 append(outer_circ_z, inner_circ_z)]).T

 y = hstack([zeros(n_samples_out, dtype=intp),

 ones(n_samples_in, dtype=intp)])

 if shuffle:

 X, y = shuffle(X, y, random_state=generator)

 if noise is not None:

 X += generator.normal(scale=noise, size=X.shape)

 return X, y

from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, GradientBoostingClassifier, Ad

from sklearn.tree import DecisionTreeClassifier

from sklearn.svm import SVC, LinearSVC

from sklearn.neural_network import MLPClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model_selection import train_test_split

from sklearn.model_selection import StratifiedShuffleSplit

from sklearn.metrics import roc_curve, roc_auc_score

RANDOM_STATE = 123

classifiers = {

 'Random Forest': RandomForestClassifier(random_state=RANDOM_STATE),

 'AdaBoost (Random Forest)': AdaBoostClassifier(RandomForestClassifier(random_state=RANDOM_STATE)),

 'Extra Trees': ExtraTreesClassifier(random_state=RANDOM_STATE),

 'AdaBoost (Extra Tree)': AdaBoostClassifier(ExtraTreesClassifier(random_state=RANDOM_STATE)),

 'Decision Tree': DecisionTreeClassifier(random_state=RANDOM_STATE),

 'SVC (RBF)': SVC(random_state=RANDOM_STATE),

 'SVC (Linear)': LinearSVC(random_state=RANDOM_STATE),

 'Multi-layer Perceptron': MLPClassifier(max_iter=5000, random_state=RANDOM_STATE)

}

PYTHON

Q1 and Q2

seed(RANDOM_STATE)

X, y = make_torus_3D(n_samples=2000, factor=.5, noise=.3, random_state=RANDOM_STATE)

feature_1, feature_2, feature_3 = 0, 1, 2

fig, ax = subplots(figsize=(12, 9))

ax.set_visible(False)

ax = axes(projection="3d")

im = ax.scatter3D(X[:, feature_1], X[:, feature_2], X[:, feature_3],

 marker='o', s=20, c=y, cmap='bwr');

ax.set_xlabel('Feature A')

ax.set_ylabel('Feature B')

ax.set_zlabel('Feature C')

ax.view_init(30, 50);

show()

PYTHON

Q3

sss = StratifiedShuffleSplit(random_state=RANDOM_STATE, n_splits=10, test_size=0.3)

split_data_indices = sss.split(X=X, y=y)

score = list()

for train_index, test_index in sss.split(X, y):

 X_s, y_s = X[train_index, :], y[train_index]

 new_obs_s, y_test_s = X[test_index, :], y[test_index]

 score_clf = list()

 for name, clf in classifiers.items():

 clf.fit(X_s, y_s)

 y_pred = clf.predict(new_obs_s)

 score_clf.append(clf.score(new_obs_s, y_test_s))

 score.append(score_clf)

score_mean = mean(score, axis=0)

bins = arange(len(score_mean))

fig, ax = subplots()

ax.bar(bins, score_mean);

show()

print(classifiers.keys())

print('Average scores: ')

print(["{0:0.2f}".format(ind) for ind in score_mean])

PYTHON

▾ MLPClassifier

MLPClassifier(max_iter=5000, random_state=123)

dict_keys(['Random Forest', 'AdaBoost (Random Forest)', 'Extra Trees', 'AdaBoost (Extra Tree)', 'Decision

Average scores:

['0.87', '0.88', '0.87', '0.87', '0.83', '0.89', '0.49', '0.88']

OUTPUT

clf_RF = RandomForestClassifier(random_state=RANDOM_STATE)

clf_RF.fit(X_s, y_s)

y_pred = clf_RF.predict(new_obs_s)

score_RF = clf_RF.score(new_obs_s, y_test_s)

print('Random Forest score:', score_RF)

PYTHON

Random Forest score: 0.88

OUTPUT

▾ RandomForestClassifier

RandomForestClassifier(random_state=123)

Q4

The three features contribute similarly to the outcome.

importances = clf_RF.feature_importances_

template = 'Feature 1: {:.1f}%; Feature 2: {:.1f}%; Feature 3: {:.1f}%'

print(template.format(importances[0]*100, importances[1]*100, importances[2]*100))

bins = arange(importances.shape[0])

fig, ax = subplots()

ax.bar(bins, importances, color=('g', 'm', 'b'));

ax.set_ylabel('Feature Importance', fontsize=16)

xticks(bins, ('Feature 1', 'Feature 2', 'Feature 3'), fontsize=16);

show()

PYTHON

Feature 1: 31.4%; Feature 2: 33.9%; Feature 3: 34.7%

OUTPUT

Different classification algorithms approach problems differently.

train_test_split function tries to preserve the ratio of labels in the split

Increasing the level of noise in the data makes the task more complicated.

The potential bias due to splitting could be avoid using stratified shuffle split.

StratifiedShuffleSplit is a method that uses n_splits and test_size parameters.

KEY POINTS

