
NumPy Arrays

Pouria Hadjibagheri and Gerold Baier

Experimental

2018-19

Contents

0.1 NumPy Arrays . 1

0.1.1 Creating NumPy arrays . 1

0.1.2 Boolean operations . 3

0.1.3 Reshaping . 3

0.1.4 Mesh grid . 4

Contents iii

NumPy Arrays

Creating NumPy arrays

0.1 NumPy Arrays

You should be familiar with two types of arrays in Python, lists and dictionaries. Here we
will look at NumPy arrays which are frequently used to handle data in Machine Learning.
W NumPy is a fundamental package for scientific computing with Python. See for example
this W quickstart tutorial.

0.1.1 Creating NumPy arrays

Let us practice creating different kinds of NumPy arrays. In each case, the corresponding
functions need to be imported from the package.

A Python list can directly be converted to a NumPy array:

In [1]: 1 from numpy import asarray
2

3

4 mylist = [1, 3, 5, 7, 9]
5

6 na_mylist = asarray(mylist)
7

8 print(na_mylist)

Out [1]: [1 3 5 7 9]

You can check its type by using type:

In [2]: 1 print('Type:', type(na_mylist))

Out [2]: Type: <class 'numpy.ndarray'>

There are some convenient predefined types of arrays, for instance arrays of zeroes and ones:

In [3]: 1 from numpy import zeros, ones
2

3

4 na_zeros = zeros(5)
5 na_ones = ones(4)
6

7 print(na_zeros, na_ones)

Out [3]: [0. 0. 0. 0. 0.] [1. 1. 1. 1.]

Here is one way to generate a sequence of consecutive numbers:

In [4]: 1 from numpy import arange
2

3

4 # Sequence of integers from 1 to 10
5 na_range = arange(1, 11)
6

7 # Array of integers from 1 to 10 in steps of 2
8 na_range_2 = arange(1, 11, 2)
9

10 print(na_range, na_range_2, sep='\n')

Out [4]: [1 2 3 4 5 6 7 8 9 10]
[1 3 5 7 9]

Contents 1

http://www.numpy.org
https://docs.scipy.org/doc/numpy/user/quickstart.html

NumPy Arrays

Boolean operations

And here is another possibility: we can divide a given interval into a set of numbers:

In [5]: 1 from numpy import linspace
2

3

4 # Array of 6 numbers from 1 to 10
5

6 na_linspace = linspace(1, 10, 6)
7

8 print(na_linspace)

Out [5]: [1. 2.8 4.6 6.4 8.2 10.]

Then there is the possibility for a variety of arrays containing random numbers. The functions
are contained in numpy.random. As an example, here is how to create an array of normally
distributed random numbers:

In [6]: 1 from numpy.random import normal
2

3 MEAN = 0
4 STD = 1
5

6 na_random = normal(MEAN, STD, size=5)
7

8 print(na_random)

Out [6]: [1.34466714 -0.26935832 0.62343156 0.35500307 1.22220159 2.42802815]

So far we have only seen linear, one-dimensional arrays. However, NumPy arrays can be
more than one-dimensional:

In [7]: 1 na_random = normal(MEAN, STD, size=(6,5))
2 print(na_random)

Out [7]: [[-0.03375752 -1.46393965 1.14079763 0.55099799 -1.03035426]
[-0.34692165 -0.21415599 -1.18715302 -1.33351754 -0.44242791]
[1.30445973 -1.13354672 -1.48283949 -0.82756462 -1.26541849]
[0.53111819 -0.59019693 -1.53054258 0.9659866 0.75995194]
[-0.51780085 0.04335344 0.2644038 -1.83251049 -0.00800095]
[-1.04727405 0.84087167 -0.92577748 0.43677273 0.67695771]]

To find out the dimension, the shape, and the number of elements of an array we use the
following methods:

In [8]: 1 print(na_random.ndim)

Out [8]: 2

In [9]: 1 print(na_random.shape)

Out [9]: (6, 5)

In [10]: 1 print(na_random.size)

Out [10]: 30

2 Contents

NumPy Arrays

Reshaping

0.1.2 Boolean operations

An important feature of these arrays is that we can perform Boolean operations on them. E.g.
we can label an array according to whether a number is larger than zero or not:

In [1]: 1 mask = na_random > 0
2

3 print(mask)

Out [1]: [[False, False, True, True, False],
[False, False, False, False, False],
[True, False, False, False, False],
[True, False, False, True, True],
[False, True, True, False, False],
[False, True, False, True, True]]

0.1.3 Reshaping

To alter the shape of a NumPy array, we may use the .reshape() method. The method takes
numeric arguments that define the new shape of an array. For instance, .reshape(3, 4, 2)
will, if possible, attempt to reshape the array onto a three-dimensional array with 3 rows, 4
columns, and 2 planes.

Let’s us create a simple one-dimensional array:

In [1]: 1 one_dim_array = asarray([1, 2, 3, 4])
2

3 print('Shape:', one_dim_array.shape)
4 print(one_dim_array)

Out [1]: Shape: (4,)
[1 2 3 4]

To convert this array to two-dimensions, we do as follows:

In [2]: 1 two_dim_array = one_dim_array.reshape(-1, 1)
2

3 print('Shape:', two_dim_array.shape)
4 print(two_dim_array)

Out [2]: Shape: (4, 1)
[[1]
[2]
[3]
[4]]

In this example, we used .reshape(-1, 1) to reshape our array, which in essence means the
follow: Reshape the array to as many rows as needed (i.e. −1) with 1 column.

It is important that the members in an array exactly fit the new shape. To that end, instead of
using −1 in the above example, we can use the number of rows that we require:

In [3]: 1 alternative_two_dim = one_dim_array.reshape(4, 1)
2

3 print('Shape:', alternative_two_dim.shape)
4 print(alternative_two_dim)

Contents 3

NumPy Arrays

Mesh grid

Out [3]: Shape: (4, 1)
[[1]
[2]
[3]
[4]]

If, however, we attempt to reshape an array, and the number of members do not fit the target
shape, a ValueError will be raised:

In [4]: 1 one_dim_array.reshape(5, 1)

Out [4]: ---
ValueError Traceback (most recent call last)
----> 1 one_dim_array.reshape(5, 1)

ValueError: cannot reshape array of size 4 into shape (5,1)

Conversely, we can convert a two-dimensional array to a one-dimensional, too:

In [5]: 1 back_to_one_dim = two_dim_array.reshape(-1)
2

3 print('Shape:', back_to_one_dim.shape)
4 print(back_to_one_dim)

Out [5]: Shape: (4,)
[1 2 3 4]

Alternatively, we can use the .ravel() method to convert an array into one-dimension:

In [6]: 1 one_dim_ravel = two_dim_array.ravel()
2

3 print('Shape:', one_dim_ravel.shape)
4 print(one_dim_ravel)

Out [6]: Shape: (4,)
[1 2 3 4]

0.1.4 Mesh grid

Suppose that we need a matrix of numbers that represent every possible combination of two
numeric vectors (i.e. one-dimensional arrays). This matrix is referred to as a mesh grid. In
other a words, a mesh grid of 2 vectors a and b is defined as 2 matrices, such that A is a matrix
where each row is a copy of vector a, and B is a matrix where each column is a copy of vector
b.

In mathematical terms, a mesh grid is defined as:

Given vectors a and b:

a = [−2 −1 0 1 2]

b = [−2 −1 0 1 2]

The grids are defined as:

4 Contents

NumPy Arrays

Mesh grid

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 −1 0 1 2

−2 −1 0 1 2

−2 −1 0 1 2

−2 −1 0 1 2

−2 −1 0 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 −2 −2 −2 −2

−1 −1 −1 −1 −1

0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
There are two options to implement such grids in Python: - Using the meshgrid() function,
we can create a grid from 2 existing vectors (i.e. one-dimensional array); - Using the mgrid
function, which allows us to define our grid ab initio.

Using the meshgrid() function:

In [1]: 1 from numpy import arange
2

3 vector_a = arange(5)
4 vector_b = arange(4)
5

6 print('Vector A, shape:', vector_a.shape)
7 print(vector_a)
8

9 print('Vector B, shape:', vector_b.shape)
10 print(vector_b)

Out [1]: Vector A, shape: (5,)
[0 1 2 3 4]
Vector B, shape: (4,)
[0 1 2 3]

In [2]: 1 from numpy import meshgrid
2

3

4 grid_a, grid_b = meshgrid(vector_a, vector_b)
5

6 print('Grid A, shape:', grid_a.shape)
7 print(grid_a)
8

9 print('Grid B, shape:', grid_b.shape)
10 print(grid_b)

Out [2]: Grid A, shape: (4, 5)
[[0 1 2 3 4]
[0 1 2 3 4]
[0 1 2 3 4]
[0 1 2 3 4]]
Grid B, shape: (4, 5)
[[0 0 0 0 0]
[1 1 1 1 1]
[2 2 2 2 2]

Contents 5

NumPy Arrays

Mesh grid

[3 3 3 3 3]]

An important application of such a grid is that it can be used for the display of functions of
two variables:

In [3]: 1 from matplotlib.pyplot import subplots
2 from numpy import linspace
3

4 vector_a = linspace(-1, 1, 100)
5 vector_b = linspace(-1, 1, 100)
6

7 grid_a, grid_b = meshgrid(vector_a, vector_b)
8

9 z = grid_a ⁎⁎ 2 + grid_b ⁎⁎ 2
10

11

12 fig, ax = subplots(figsize=(5, 5))
13

14 ax.contourf(grid_a, grid_b, z, cmap='gray_r');

Figure 0.1.1 Contour plot

MatPlotLib supplies a range of colour maps
(referred to as cmap), see their W o�icial doc-
umentation to find out more. Note that the
reverse of each colour map can be obtained
by adding _r to the end of the colour map’s
name.

� Note

Alternatively, we can use the mgrid function to simplify the process. The application of
mgrid is slightly different to other Python functions, in that it uses square brackets ([...])
instead of parentheses ((...)) to receive arguments. The arguments are defined as follows:

Out [3]: # dimension 1 dimension 2 ...
--
mgrid[start:stop:step, start:stop:step, ...]

In [4]: 1 from numpy import mgrid
2

3

4 grid_a, grid_b = mgrid[-2:3:1, -2:3:1]
5

6 print('Grid A, shape:', grid_a.shape)
7 print(grid_a)
8

9 print('Grid B, shape:', grid_b.shape)
10 print(grid_b)

Out [4]: Grid A, shape: (5, 5)
[[-2 -2 -2 -2 -2]
[-1 -1 -1 -1 -1]
[0 0 0 0 0]
[1 1 1 1 1]
[2 2 2 2 2]]
Grid B, shape: (5, 5)
[[-2 -1 0 1 2]
[-2 -1 0 1 2]

6 Contents

https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/examples/color/colormaps_reference.html

NumPy Arrays

Mesh grid

[-2 -1 0 1 2]
[-2 -1 0 1 2]
[-2 -1 0 1 2]]

As you may have noticed, there is a slight
di�erence between the outputs of meshgrid
and mgrid in that the first and the second
matrices are returned in a di�erent order.
That is, when we use meshgrid the first mat-
rix represent each member of the the vec-
tor it is given in a di�erent columns, and the
second matrix represents them in di�erent
rows. Conversely, mgrid returns the first and
the second matrices to represent the mem-
bers in di�erent rows and columns respect-
ively. This is usually not important, but it is
something that a programmer / data analyst
is expected to be aware of.

� Note

Let us now convert these grids into a one-dimensional array to represent the following vectors:

G′A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 −2 −2 −2 −2 −1 −1 −1 −1 −1

0 0 0 0 0 1 1 1 1 1

2 2 2 2 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G′B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 −1 0 1 2 −2 −1 0 1 2

−2 −1 0 1 2 −2 −1 0 1 2

−2 −1 0 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In [5]: 1 grid_a_flat = grid_a.ravel()
2 grid_b_flat = grid_b.ravel()
3

4 print('Grid A:', grid_a_flat)
5 print('Grid B:', grid_b_flat)

Out [5]: Grid A: [-2 -2 -2 -2 -2 -1 -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1 2 2 2
↪ 2

2]
Grid B: [-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0

↪ 1
2]

We now have 2 one-dimensional arrays whose members, when taken together, represents
every possible combination of the members of the original vectors:

f ′(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 −2

−1 −2

0 −2

1 −2

2 −2

⋮ ⋮
2 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
To create f ′(x) in Python, we need to concatenate grid_a_flat and grid_b_flat, and
create a two-dimensional matrix. Concatenation of arrays in Python may be achieved using
the c_ function in NumPy. Similar to the mgrid function, the c_ function requires its arguments
to be given using square bracket ([...]):

In [6]: 1 from numpy import c_
2

3

4 combinations = c_[grid_a_flat, grid_b_flat]
5

6 print(combinations)

Contents 7

NumPy Arrays

Mesh grid

Out [6]: [[-2 -2]
[-2 -1]
[-2 0]
[-2 1]
[-2 2]
[-1 -2]
[-1 -1]
[-1 0]
[-1 1]
[-1 2]
[0 -2]
[0 -1]
[0 0]
[0 1]
[0 2]
[1 -2]
[1 -1]
[1 0]
[1 1]
[1 2]
[2 -2]
[2 -1]
[2 0]
[2 1]
[2 2]]

Let us now go ahead and plot combinations:

In [7]: 1 fig, ax = subplots(figsize=(5, 5))
2

3 ax.scatter(combinations[:, 0], combinations[:, 1])
4

5 ax.set(xticks=[-2, 0, 2], yticks=[-2, 0, 2]);

Figure 0.1.2

Two dimensional histograms are constructed using a grid of two one-dimensional arrays (vec-
tors):

In [8]: 1 from numpy.random import normal
2

3

4 fig, ax = subplots(figsize=(10, 8))
5

6 x = normal(0, .5, 100000)
7 y = normal(0, .5, 100000)
8

9 _, _, _, cax = ax.hist2d(x, y, bins=100, cmap='magma')
10

11 fig.colorbar(cax);

For more on the creation of arrays see the W Array creation tutorial from SciPy.

8 Contents

https://docs.scipy.org/doc/numpy-1.15.0/user/basics.creation.html

NumPy Arrays

Mesh grid

Figure 0.1.3

Contents 9

	NumPy Arrays
	Creating NumPy arrays
	Boolean operations
	Reshaping
	Mesh grid

