
Data Frames

• How to use dataframes in Python?

• Import data set as dataframe
• Inspect data frame and access data
• Produce an overview of data features
• Create data plots using matplotlib

Video Tutorials

Pandas Dataframes - Import and Data Handling

Pandas Dataframes - Visualisation

Introduction

This is our first lesson on learning and understanding dataframes in Python.

The diabetes data set is one of the challenging task.

Challenge: The diabetes data set

Here is a screenshot of the so-called diabetes data set. It is taken from this webpage and it is one of the
example data sets used to illustrate machine learning functionality in scikit-learn (Part III and Part IV of
the course).

1

https://www4.stat.ncsu.edu/~boos/var.select/diabetes.tab.txt
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html

Data Frames

This figure captures only the top part of the data. On thewebpage you need to scroll down considerably
to view the whole content. Thus, to get an overview of the dataset is the first main task in Data
Science.

The lesson

• introduces code to read and inspect the data
• works with a specific data frame and extracts some techniques to get an overview
• discusses the concept ‘distribution’ as a way of summarising data in a single figure

To get to know a dataset you need to

• access the data
• check the content
• produce a summary of basic properties

In this lesson we will only look at univariate features where each data column is studied independently
of the others. Further properties and bivariate features will be the topic of the next lesson.

2

Data Frames

Work Through Example

Reading data into a Pandas DataFrame

The small practice data file for this section is called ‘everleys_data.csv’ and can be downloaded using
the link given above in “Materials for this Lesson”. To start, please create a subfolder called ‘data’
in the current directory and put the data file in it. It can now be accessed using the relative path
data/everleys_data.csv or data\everleys_data.csv, respectively.

The file everleys_data.csv contains blood concentrations of calcium and sodium ions from 17
patients with Everley’s syndrome. The data are taken from a BMJ statistics tutorial. The data are stored
as comma-separated values (csv), two values for each patient.

To get to know a dataset, we will use the Pandas package and the Matplotlib plotting. The Pandas pack-
age for data science is included in the Anaconda distribution of Python. Check this link for installation
instructions to get started.

If you are not using the Anaconda distribution, pease refer to these guidelines.

To use the functions contained in Pandas they need to be imported. Our dataset is in ‘.csv’ format,
and we therefore need to read it from a csv file. For this, we import the function read_csv. This will
create a Pandas dataframe.

1 import sys
2 print(sys.version)

1 3.10.8 (main, Oct 18 2022, 06:43:21) [GCC 9.4.0]

1 from pandas import read_csv

1 Error in py_call_impl(callable, dots$args, dots$keywords):
ModuleNotFoundError: No module named 'pandas'

Executing this code does not lead to any output on the screen. However, the function is now ready to
be used. To use it, we type its name and provide the required arguments. The following code should
import the Everley’s data into your JupyterLab notebook (or other Python environment):

1 # for Mac OSX and Linux
2 # (please go to the next cell if using Windows)
3
4 df = read_csv("data/everleys_data.csv")

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'read_csv' is not defined

3

https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one/7-t-tests
https://pandas.pydata.org/getting_started.html
https://pandas.pydata.org/getting_started.html
https://pandas.pydata.org/docs/getting_started/install.html

Data Frames

1 # please uncomment for Windows
2 # (please go to previous cell if using Mac OSX or Linux)
3
4 # df = read_csv("data\everleys_data.csv")

This code uses the read_csv function from Pandas to read data from a data file, in this case a file
with extension ‘.csv’. Note that the location of the data file is specified within quotes by the relative
path to the subfolder ‘data’ followed by the file name. Use the JupyterLab file browser to check that
subfolder exists and has the file in it.

A�er execution of the code, the data are contained in a variable called df. This is a structure referred
to as a Pandas DataFrame.

4

Data Frames

A Pandas dataframe is a 2-dimensional labeled data structure with columns of potentially di�er-
ent types. You can think of it as a spreadsheet.

To see the contents of df, simply use:

1 df

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

(Compare with the result of print(df)which displays the contents in a di�erent format.)

The output shows in the first column an index, integers from 0 to 17; and the calcium and sodium
concentrations in columns 2 and 3, respectively. The default indexing starts from zero (Python is a
‘zero-based’ programming language).

In a dataframe, the first column is referred to as Indices, the first row is referred to as Labels. Note that
the row with the labels is excluded from the row count. Similarly, the row with the indices is excluded
from the column count.

For large data sets, the function head is a convenient way to get a feel of the dataset.

1 df.head()

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

Without any input argument, this displays the first five data lines of the dataframe. You can specify
alter the number of rows displayed by including a single integer as argument, e.g. head(10).

If you feel there are toomany decimal places in the default view, you can restrict their number by using
the round function:

1 df.head().round(2)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

While we can see howmany rows there are in a dataframe when we display the whole data frame and
look at the last index, there is a convenient way to obtain the number directly:

1 no_rows = len(df)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

1 print('Data frame has', no_rows, 'rows')

5

https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#dataframe

Data Frames

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'no_rows' is not defined

You could see above, that the columns of the dataframe have labels. To see all labels:

1 column_labels = df.columns

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

1 print(column_labels)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'column_labels' is not defined

Nowwe can count the labels to obtain the number of columns:

1 no_columns = len(column_labels)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'column_labels' is not defined

1 print('Data frame has', no_columns, 'columns')

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'no_columns' is not defined

And if you want to have both the number of the rows and the columns together, use shape. Shape
returns a tuple of two numbers, first the number of rows, then the number of columns.

1 df_shape = df.shape

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

1 print('Data frame has', df_shape[0], 'rows and',df_shape[1], 'columns'
)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df_shape' is not defined

Notice that shape (like columns) is not followed by round parenthesis. It is not a function that can
take arguments. Technically, shape is a ‘property’ of the dataframe.

To find out what data type is contained in each of the columns, us dtypes, another ‘property’:

1 df.dtypes

6

Data Frames

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

In this case, both columns contain floating point (decimal) numbers.

DIY1: Read data into a dataframe

Download the data file ‘loan_data.csv’ using the link given above in “Materials for this Lesson”. It
contains data that can be used for the assessment of loan applications. Read the data into a DataFrame.
It is best to assign it a name other than ‘df’ (to avoid overwriting the Evereley data set).

Display the first ten rows of the Loan data set to see its contents. It is taken from a tutorial on Data
Handling in Python which youmight find useful for further practice.

From this exercise we can see that a dataframe can contain di�erent types of data: real numbers
(e.g. LoanAmount), integers (ApplicantIncome), categorical data (Gender), and strings (Loan_ID).

1 from pandas import read_csv
2
3 # dataframe from .csv file

1 Error in py_call_impl(callable, dots$args, dots$keywords):
ModuleNotFoundError: No module named 'pandas'

1 df_loan = read_csv("data/loan_data.csv")
2
3 # display contents

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'read_csv' is not defined

1 df_loan.head(10)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df_loan' is not defined

Accessing data in a DataFrame

If a datafile is large and you only want to check the format of data in a specific column, you can limit
the display to that column. To access data contained in a specific column of a dataframe, we can use a
similar convention as in a Python dictionary, treating the column names as ‘keys’. E.g. to show all rows
in column ‘Calcium’, use:

7

https://www.analyticsvidhya.com/blog/2016/01/complete-tutorial-learn-data-science-python-scratch-2/
https://www.analyticsvidhya.com/blog/2016/01/complete-tutorial-learn-data-science-python-scratch-2/

Data Frames

1 df['calcium']

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

To access individual rows of a column we use two pairs of square brackets:

1 df['calcium'][0:3]

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

Here all rules for slicing can be applied. As for lists and tuples, the indexing of rows is semi-inclusive,
lower boundary included, upper boundary excluded. Note that the first pair of square brackets refers
to a column and the second pair refers to the rows. This is di�erent from e.g. accessing items in a
nested list.

Accessing items in a Pandas dataframe is analogous to accessing the values in a Python dictionary by
referring to its keys.

To access non-contiguous elements, we use an additional pair of square brackets (as if for a list within
a list):

1 df['calcium'][[1, 3, 7]]

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

Another possibility to index and slice a dataframe is the use of the ‘index location’ or iloc property. It
refers first to rows and then to columns by index, all within a single pair of brackets. For example, to
get all rows : of the first column (index 0), you use:

1 df.iloc[:, 0]

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

To display only the first three calcium concentrations, you use slicing, remembering that the upper
bound is excluded):

1 df.iloc[0:3, 0]

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

To access non-consecutive values, we can use a pair of square brackets within the pair of square

8

https://docs.python.org/3/tutorial/introduction.html

Data Frames

brackets:

1 df.iloc[[2, 4, 7], 0]

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

Similarly, we can access the values frommultiple columns:

1 df.iloc[[2, 4, 7], :]

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

To pick only the even rows from the two columns, check this colon notation:

1 df.iloc[:18:2, :]

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

The number a�er the second colon indicates the stepsize.

DIY2: Select data from dataframe

Display the calciumand sodiumconcentrations of all patients except the first. Check themodel solution
at the bottom for options.

1 df[['calcium', 'sodium']][1:]

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

Mixing the ways to access specific data in a dataframe can be confusing and needs practice.

Search for missing values

Some tables contain missing entries. You can check a dataframe for such missing entries. If no missing
entry is found, the function isnullwill return False.

1 df.isnull().any()

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

This shows that there are nomissing entries in our dataframe.

9

Data Frames

DIY3: Find NaN in dataframe

In the Loan data set, check the entry ‘Self-employed’ for ID LP001059. It shows how amissing value is
represented as ‘NaN’ (not a number).

Verify that the output of isnull in this case is True

1 df_loan['Self_Employed'][8]

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df_loan' is not defined

1 df_loan['Self_Employed'][8:9].isnull()

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df_loan' is not defined

Basic data features

Summary Statistics

To get a summary of basic data features use the function describe:

1 description = df.describe()

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

1 description

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'description' is not defined

The describe function produces a new dataframe (here called ‘descrition’) that contains the number
of samples, themean, the standard deviation, minimum, 25th, 50th, 75th percentile, and themaximum
value for each column of the data. Note that the indices of the rows have now been replaced by strings.
To access rows, it is possible to refer to those names using the loc property. E.g. to access the mean
of the calcium concentrations from the description, each of the following is valid:

1 # Option 1
2 description.loc['mean']['calcium']
3
4 # Option 2

10

Data Frames

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'description' is not defined

1 description.loc['mean'][0]
2
3 # Option 3

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'description' is not defined

1 description['calcium']['mean']
2
3 # Option 4

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'description' is not defined

1 description['calcium'][1]

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'description' is not defined

DIY4: Practice

Use your own .csv data set to practice. (If you don’t have a data set at hand, any excel table can be
exported as .csv.) Read it into a dataframe, check its header, access indivdual values or sets of values.
Create a statistics using describe and check for missing values using .isnull.

[ad libitum]

Iterating through the columns

Now we know how to access all data in a dataframe and how to get a summary statistics over each
column.

Here is code to iterate through the columns and access the first two concentrations:

1 for col in df:
2
3 print(df[col][0:2])

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

11

Data Frames

As a slightly more complex example, we access the median (‘50%’) of each column in the description
and add it to a list:

1 conc_medians = list()
2
3 for col in df:
4
5 conc_medians.append(df[col].describe()['50%'])

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

1 print('The columns are: ', list(df.columns))

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

1 print('The medians are: ', conc_medians)

1 The medians are: []

This approach is useful for data frames with a large number of columns. For instance, it is possible to
then create a boxplot or histogram for themeans, medians etc. of the dataframe and thus to get an
overview of all (comparable) columns.

Selecting a subset based on a template

An analysis of a data set may need to be done on part of the data. This can o�en be formulated by
using a logical condition which specifies the required subset.

For this we will assume that some of the data are labelled ‘0’ and some are labelled ‘1’. Let us therefore
see how to add a new column to our Evereleys data frame which contains the (in this case arbitrary)
labels.

First we randomly create as many labels as we have rows in the data frame. We can use the randint
function which we import from ‘numpy.random’. randint in its simple form takes two arguments.
First the upper bound of the integer needed, where by default it starts from zero. As Python is exclusive
on the upper bound, providing ‘2’ will thus yield either ‘0’ or ‘1’ only.

1 from numpy.random import randint

1 Error in py_call_impl(callable, dots$args, dots$keywords):
ModuleNotFoundError: No module named 'numpy'

1 no_rows = len(df)

12

Data Frames

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

1 randomLabel = randint(2, size=no_rows)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'randint' is not defined

1 print('Number of rows: ', no_rows)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'no_rows' is not defined

1 print('Number of Labels:', len(randomLabel))

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'randomLabel' is not defined

1 print('Labels: ', randomLabel)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'randomLabel' is not defined

Note howwe obtain the number of rows (18) using len and do not put it directly into the code.

Now we create a new data column in our df dataframe which contains the labels. To create a new
column, you can simply refer to a column name that does not yet exist and assign values to it. Let us
call it ‘gender’, assuming that ‘0’ represents male and ‘1’ represents female.

As gender specification can include more than two labels, try to create a column with more than two
randomly assigned labels e.g. (0, 1, 2).

1 df['gender'] = randomLabel

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'randomLabel' is not defined

1 df.head()

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

Nowwe can use the information contained in ‘gender’ to filter the data by gender. To achieve this, we
use a conditional statement. Let us check which of the rows are labelled as ‘1’:

13

Data Frames

1 df['gender'] == 1

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

If we assign the result of the conditional statement (Boolean True or False) to a variable, then this
variable can act as a template to filter the data. If we call the data frame with that variable, we will only
get the rows where the condition was found to be True:

1 df_female = df['gender'] == 1

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

1 df[df_female]

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

Using the Boolean, we only pick the rows that are labelled ‘1’ and thus get a subset of the data according
to the label.

DIY5: Using a template

Modify the code to calculate the number of samples labelled 0 and check the number of rows of that
subset.

1 from numpy.random import randint

1 Error in py_call_impl(callable, dots$args, dots$keywords):
ModuleNotFoundError: No module named 'numpy'

1 no_rows = len(df)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

1 randomLabel = randint(2, size=no_rows)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'randint' is not defined

1 df['gender'] = randomLabel

14

Data Frames

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'randomLabel' is not defined

1 df_male = df['gender'] == 0

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

1 no_males = len(df[df_male])

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df' is not defined

1 print(no_males, 'samples are labelled "male".')

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'no_males' is not defined

Visualisation of data

It is easy to see from the numbers that the concentrations of sodium are much higher than that of
calcium. However, to also compare the medians, percentiles and the spread of the data it is better to
use visualisation.

The simplest way of visualisation is to use Pandas functionality which o�ers direct ways of plotting.
Here is an example where a boxplot is created for each column:

1 import matplotlib.pyplot as plt

1 Error in py_call_impl(callable, dots$args, dots$keywords):
ModuleNotFoundError: No module named 'matplotlib'

1 df = read_csv("data/everleys_data.csv")

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'read_csv' is not defined

1 plt.boxplot(df)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'plt' is not defined

1 plt.show()

15

Data Frames

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'plt' is not defined

By default, boxplots are shown for all columns if no further argument is given to the function (empty
round parenthesis). As the calcium plot is rather squeezed wemay wish to see it individually. This can
be done by specifying the calcium column as an argument:

1 # Boxplot of calcium results
2 # df.boxplot(column='calcium');
3
4
5 plt.boxplot(df['calcium'])

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'plt' is not defined

1 plt.show()

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'plt' is not defined

Plots using Matplotlib

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations
in Python.

The above is an easy way to create boxplots directly on the dataframe. It is based on the library
Matplotlib and specifically uses the pyplot library. For simplicity, the code is put in a convenient
Pandas function.

However, we are going to use Matplotlib extensively later on in the course, and we therefore now
introduce the direct, generic way of using it.

For this, we import the function subplots from the pyplot library:

1 from matplotlib.pyplot import subplots

1 Error in py_call_impl(callable, dots$args, dots$keywords):
ModuleNotFoundError: No module named 'matplotlib'

The way to use subplots is to first set up a figure environment (below it is called ‘fig’) and an empty
coordinate system (below called ‘ax’). The plot is then done using one of the many methods available
in Matplotlib. We apply it to the coordinate system ‘ax’.

As an example, let us create a boxplot of the calcium variable. As an argument of the function we need

16

https://matplotlib.org
https://matplotlib.org/stable/api/pyplot_summary.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.boxplot.html#matplotlib.pyplot.boxplot%7C

Data Frames

to specify the data. We can use the values of the ‘calcium’ concentrations from the column with that
name:

1 fig, ax = subplots()

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'subplots' is not defined

1 ax.boxplot(df['calcium'])

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

1 ax.set_title('Boxplot of Everley\'s Calcium');

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

Figure 1: png

Note how following the actual plot we define the title of the plot by referring to the same coordinate
system ax.

The value of subplots becomes apparent when we try to create more than one plot in a single
figure.

17

Data Frames

Here is an example to create two boxplots next to each other. The keyword arguments to use is ‘ncols’
which is the number of figures per row. ‘ncols=2’ indicates that you want to have two plots next to each
other.

1 fig, ax = subplots(ncols=2)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'subplots' is not defined

1 ax[0].boxplot(df['calcium'])

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

1 ax[0].set_title('Calcium')

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

1 ax[1].boxplot(df['sodium'])

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

1 ax[1].set_title('Sodium');

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

Note that you now have to refer to each of the subplots by indexing the coordinate system ‘ax’. | This
figure gives a good overview of the Everley’s data.

If you prefer to have the boxplots of both columns in a single figure, that can also be done:

1 fig, ax = subplots(ncols=1, nrows=1)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'subplots' is not defined

1 ax.boxplot([df['calcium'], df['sodium']], positions=[1, 2])

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

1 ax.set_title('Boxplot of Calcium (left) and Sodium (right)')

18

Data Frames

Figure 2: png

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

DIY6: Boxplot from Loan data

Plot the boxplots of the ‘ApplicantIncome’ and the ‘CoapplicantIncome’ in the Loan data using the
above code.

1 fig, ax = subplots(ncols=1, nrows=1)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'subplots' is not defined

1 ax.boxplot([df_loan['ApplicantIncome'], df_loan['CoapplicantIncome']],
positions=[1, 2])

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

1 ax.set_title('Applicant Income (left) & Co-Applicant Income (right)');

19

Data Frames

Figure 3: png

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

Histogram

Another good overview is the histogram: Containers or ‘bins’ are created over the range of values found
within a column and the count of the values for each bin is plotted on the vertical axis.

1 fig, ax = subplots(ncols=2, nrows=1)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'subplots' is not defined

1 ax[0].hist(df['calcium'])

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

1 ax[0].set(xlabel='Calcium', ylabel='Count');

20

Data Frames

Figure 4: Applicant Income (le�) & Co-Applicant Income (right)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

1 ax[1].hist(df['sodium'])

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

1 ax[1].set(xlabel='Sodium', ylabel='Count');

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

1 fig.suptitle('Histograms of Everley concentrations', fontsize=15);

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'fig' is not defined

This also shows how to add labels to the axes and a title to the overall figure.

This uses the default value for the generation of the bins. It is set to 10 bins over the range of which
values are found. The number of bins in the histogram can be changed using the keyword argument
‘bins’:

21

Data Frames

Figure 5: png

22

Data Frames

1 fig, ax = subplots(ncols=2, nrows=1)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'subplots' is not defined

1 ax[0].hist(df['calcium'], bins=5)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

1 ax[0].set(xlabel='Calcium, 5 bins', ylabel='Count');

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

1 ax[1].hist(df['calcium'], bins=15)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

1 ax[1].set(xlabel='Calcium, 15 bins', ylabel='Count');

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

1 fig.suptitle('Histograms with Different Binnings', fontsize=16);

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'fig' is not defined

Note how the y-label of the right figure is not placed well. To correct for the placement of the labels
and the title, you can use tight_layout on the figure:

1 fig, ax = subplots(ncols=2, nrows=1)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'subplots' is not defined

1 ax[0].hist(df['calcium'], bins=5)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

1 ax[0].set(xlabel='Calcium, 5 bins', ylabel='Count');

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:

23

Data Frames

Figure 6: png

24

Data Frames

name 'ax' is not defined

1 ax[1].hist(df['calcium'], bins=15)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

1 ax[1].set(xlabel='Calcium, 15 bins', ylabel='Count');

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

1 fig.suptitle('Histograms with Different Binnings', fontsize=16);

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'fig' is not defined

1 fig.tight_layout()

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'fig' is not defined

Figure 7: png

25

Data Frames

DIY7: Create the histogram of a column

Take the loan data and display the histogram of the loan amount that people asked for. (Loan amounts
are divided by 1000, i.e. in k£ on the horizontal axis). Use e.g. 20 bins.

1 # Histogram of loan amounts in k£
2
3 fig, ax = subplots()

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'subplots' is not defined

1 ax.hist(df_loan['LoanAmount'], bins=20)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

1 ax.set(xlabel='Loan amount', ylabel='Count');

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

1 ax.set_title('Histograms of Loan Amounts', fontsize=16);

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

Handling the Diabetes Data Set

We now return to the data set that started our enquiry into the handling of data in a dataframe.

We will now:

• Import the diabetes data from ‘sklearn’
• Check the shape of the dataframe and search for NANs
• Get a summary plot of one of its statistical quantities (e.g. mean) for all columns

First we import the data set and check its head. Wait until the numbers show below the code, it might
take a while.

1 from sklearn import datasets

1 Error in py_call_impl(callable, dots$args, dots$keywords):
ModuleNotFoundError: No module named 'sklearn'

26

Data Frames

Figure 8: Histograms of Loan Amounts

1 diabetes = datasets.load_diabetes()

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'datasets' is not defined

1 X = diabetes.data

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'diabetes' is not defined

1 from pandas import DataFrame

1 Error in py_call_impl(callable, dots$args, dots$keywords):
ModuleNotFoundError: No module named 'pandas'

1 df_diabetes = DataFrame(data=X)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'DataFrame' is not defined

1 df_diabetes.head()

27

Data Frames

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df_diabetes' is not defined

If you don’t see all columns, use the cursor to scroll to the right.

Now let’s check the number of columns and rows.

1 no_rows = len(df_diabetes)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df_diabetes' is not defined

1 no_cols = len(df_diabetes.columns)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df_diabetes' is not defined

1 print('Rows:', no_rows, 'Columns:', no_cols)

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'no_rows' is not defined

There are 442 rows organised in 10 columns.

To get an overview, let us extract the mean of each column using ‘describe’ and plot all means as a bar
chart. The Matplotlib function to plot a bar chart is bar:

1 conc_means = list()
2
3 for col in df_diabetes:
4 conc_means.append(df_diabetes[col].describe()['mean'])

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df_diabetes' is not defined

1 print('The columns are: ', list(df_diabetes.columns))

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'df_diabetes' is not defined

1 print('The medians are: ', conc_means, 2)

1 The medians are: [] 2

1 fig, ax = subplots()

28

Data Frames

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'subplots' is not defined

1 bins = range(10)
2
3 ax.bar(bins, conc_means);

1 Error in py_call_impl(callable, dots$args, dots$keywords): NameError:
name 'ax' is not defined

Figure 9: png

The bars in this plot go up and down. Note, however, that the vertical axis has values ranging from -10ˆ(-
15) to +10ˆ(-15). This means that for all practical purposes all means are zero. This is not a coincidence.
The original values have been normalised to zero mean for the purpose of applying somemachine
learning algorithm to them.

In this example, we see how important it is to check the data before working with them.

Assignment: The cervical cancer data set

Download the cervical cancer data set provided, import it using read_csv.

• Howmany rows and columns are there?

29

Data Frames

• Howmany columns contain floating point numbers (float64)?
• Howmany of the subjects are smokers?
• Calculate the percentage of smokers
• Plot the age distribution (with e.g. 50 bins)
• Get the mean and standard distribution of age of first sexual intercourse

Keypoints

• learned importing data set as dataframe
• learned inspecting data frame and accessing data
• Producing an overview of data features
• Creating data plots using matplotlib

Download the pdf

This section’s pdf can be accessed at:Download pdf

Download jupyter notebook

This section’s material in jupyter notebook can be accessed at:Download notebook (ipynb)

30

01-introduction.ipynb

	Video Tutorials
	Pandas Dataframes - Import and Data Handling
	Pandas Dataframes - Visualisation

	Introduction
	Challenge: The diabetes data set
	The lesson
	To get to know a dataset you need to

	Work Through Example
	Reading data into a Pandas DataFrame
	DIY1: Read data into a dataframe

	Accessing data in a DataFrame
	DIY2: Select data from dataframe
	Search for missing values
	DIY3: Find NaN in dataframe

	Basic data features
	Summary Statistics
	DIY4: Practice
	Iterating through the columns
	Selecting a subset based on a template
	DIY5: Using a template

	Visualisation of data
	Plots using Matplotlib
	DIY6: Boxplot from Loan data
	Histogram
	DIY7: Create the histogram of a column

	Handling the Diabetes Data Set
	Assignment: The cervical cancer data set
	Keypoints

	Download the pdf
	Download jupyter notebook

